Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An error-eliminating fix overcomes big problem in '3rd-gen' genome sequencing

02.07.2012
Hybrid error-correction approach boosts accuracy of 'long reads' to 99.9 percent

Cold Spring Harbor, NY – The next "next-gen" technology in genome sequencing has gotten a major boost.

A quantitative biologist at Cold Spring Harbor Laboratory (CSHL) and collaborators today published results of experiments that demonstrate the power of so-called single-molecule sequencing, which was recently introduced but whose use has so far been limited by technical issues.

The team, led by CSHL Assistant Professor Michael Schatz and Adam Phillippy and Sergey Koren of the National Biodefense Analysis and Countermeasures Center and the University of Maryland (UMD), has developed a software package that corrects a serious problem inherent in the new sequencing technology: the fact that every fifth or sixth DNA "letter" it generates is incorrect. The high error rate is the flip side of the new method's chief virtue: it generates much longer genome "reads" than other technologies currently used, up to 100 times longer, and thus can provide a much more complete picture of genome structure than can be obtained with current, "2nd-gen" sequencing technology.

Using mathematical algorithms, Schatz and the team have preserved the great advantage of the "3rd-gen" method while all but eliminating its chief flaw. They have reduced the error rate from about 15% or greater to less than one-tenth of one percent. This mathematical "fix" – which has been published in open-source code to the World Wide Web – greatly increases the practical utility of 3rd-gen sequencing for the entire biomedical research community.

The team demonstrates the breadth of potential applications of single-molecule sequencing by applying their fix to sequencing tasks ranging from the tiny bacteriophage virus at one end of the difficulty scale to the large and vastly more complex genome of the parrot, at the other. The parrot genome is more than a third the size of the human genome and is published online today with the team's paper in Nature Biotechnology. The parrot sequence is "far superior to that of any previously sequenced bird genome," Schatz says.

To understand why it is better is to appreciate the advantages of 3rd-gen sequencing. The main advantage has to do with the average length of each "read" (i.e., genome segments read by a sequencer). The individual sequences are assembled into "contigs" -- shorthand for contiguous sequences -- much the way pieces in a jigsaw puzzle are assembled. In currently used 2nd-gen technology, the contigs are very small, and are massively redundant. A "consensus" version of each segment, representing the results of many layered reads, tends to be extremely accurate. But the small size of puzzle pieces prevents accurate assembly of certain genome portions, like those containing long repetitive sequences.

Obtaining superior versions of complete genomes was the objective that motivated Schatz and his collaborators, who also include HHMI Investigator Erich D. Jarvis of Duke University and CSHL Professor W. Richard McCombie, a sequencing pioneer, among others.

Combining the best of both generations

With single-molecule sequencing, the assembled contigs are much longer – affording a much better picture of relatively larger genome segments, including those occupied by lengthy repeats. This is what Schatz and his team wanted to preserve, while at the same time boosting the error-free rate. They did so by effectively taking the best of both 2nd- and 3rd-gen technologies.

"We call our approach 'hybrid error correction,'" Schatz explains.

The team's major insight was to take advantage of the long-read data offered by a 3rd-gen machine like that used in their experiments, a Pacific Biosciences RS sequencer, and mixing in highly accurate short reads obtained from a separate 2nd-gen sequencer. The two data types were run through an open-source genome assembly program called Celera Assembler to generate a clean final assembly that has proven 99.9% error-free and composed of contigs whose median size is at least double that obtainable with 2nd-gen "short-read" sequencers. Contig sizes are expected to increase appreciably in subsequent iterations of the hybrid approach as single molecule long-read sequencing improves.

High-quality genome assemblies are especially important for genome annotation and comparative genome analyses. Many microbial genome analyses depend on finished genomes, but their cost is prohibitive using older technologies. High-quality analysis of the genomes of higher organisms depends upon continuous sequences that capture long stretches of DNA that spell out genes. Discoveries in recent years of spontaneously occurring structural changes in genomes called copy number variations -- such as those made by CSHL Professor Mike Wigler and his team in their research on schizophrenia and autism – make clear the importance of being able to obtain clean and accurate pictures of the entire genomes of affected individuals.

With hybrid error correction, Schatz and his colleagues have "demonstrated that high error rates associated with long reads need not be a barrier to genome assembly," he summarizes. "High-error long reads can be efficiently assembled in combination with complementary short reads to produce assemblies not previously possible."

"Hybrid error correction and de novo assembly of single-molecule sequencing reads" appears online in Nature Biotechnology July 1, 2012. The authors are: Sergey Koren, Michael C. Schatz, Brian P. Walenz, Jeffrey Martin, Jason Howard, Ganeshkumar Ganapathy, Zhong Wang, David A. Rasko, W. Richard McCombie, Erich D. Davis and Adam M. Phillippy. the paper can be obtained online using doi: xxxxxxxxxxxxxxxx.

About Cold Spring Harbor Laboratory

Founded in 1890, Cold Spring Harbor Laboratory (CSHL) has shaped contemporary biomedical research and education with programs in cancer, neuroscience, plant biology and quantitative biology. CSHL is ranked number one in the world by Thomson Reuters for impact of its research in molecular biology and genetics. The Laboratory has been home to eight Nobel Prize winners. Today, CSHL's multidisciplinary scientific community is more than 360 scientists strong and its Meetings & Courses program hosts more than 12,500 scientists from around the world each year to its Long Island campus and its China center. Tens of thousands more benefit from the research, reviews, and ideas published in journals and books distributed internationally by CSHL Press. The Laboratory's education arm also includes a graduate school and programs for undergraduates as well as middle and high school students and teachers. CSHL is a private, not-for-profit institution on the north shore of Long Island. For more information, visit www.cshl.edu.

Peter Tarr | EurekAlert!
Further information:
http://www.cshl.edu

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>