Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Erasing the signs of aging in cells is now a reality

04.11.2011
Inserm's AVENIR "Genomic plasticity and aging" team, directed by Jean-Marc Lemaitre, Inserm researcher at the Functional Genomics Institute (Inserm/CNRS/Université de Montpellier 1 and 2), has recently succeeded in rejuvenating cells from elderly donors (aged over 100).

These old cells were reprogrammed in vitro to induced pluripotent stem cells (iPSC) and to rejuvenated and human embryonic stem cells (hESC): cells of all types can again be differentiated after this genuine "rejuvenation" therapy. The results represent significant progress for research into iPSC cells and a further step forwards for regenerative medicine.

The results are published in the Genes & Development Journal dated 1 November 2011.

Human embryonic stem cells (hESC) are undifferentiated multiple-function cells. They can divide and form all types of differentiated adult cells in the body (neurones, cardiac cells, skin cells, liver cells, etc...)

Since 2007, a handful of research teams across the world have been capable of reprogramming human adult cells into induced pluripotent cells (iPSC), which have similar characteristics and potential to human embryonic stem cells (hESC). This kind of reprogramming makes it possible to reform all human cell types without the ethical restrictions related to using embryonic stem cells.

Until now, research results demonstrated that senescence (the final stage of cellular aging) was an obstacle blocking the use of this technique for therapeutic applications in elderly patients.

Today, Inserm researcher Jean-Marc Lemaitre and his team have overcome this obstacle. The researchers have successfully rejuvenated cells from elderly donors, some over 100 years old, thus demonstrating the reversibility of the cellular aging process.

To achieve this, they used an adapted strategy that consisted of reprogramming cells using a specific "cocktail" of six genetic factors, while erasing signs of aging. The researchers proved that the iPSC cells thus obtained then had the capacity to reform all types of human cells. They have the physiological characteristics of "young" cells, both from the perspective of their proliferative capacity and their cellular metabolisms.

A cocktail of six genetic factors...

Researchers first multiplied skin cells (fibroblasts) from a 74 year-old donor to obtain the senescence characterized by the end of cellular proliferation. They then completed the in vitro reprogramming of the cells. In this study, Jean-Marc Lemaitre and his team firstly confirmed that this was not possible using the batch of four genetic factors (OCT4, SOX2, C MYC and KLF4) traditionally used. They then added two additional factors (NANOG and LIN28) that made it possible to overcome this barrier.

Using this new "cocktail" of six factors, the senescent cells, programmed into functional iPSC cells, re-acquired the characteristics of embryonic pluripotent stem cells. In particular, they recovered their capacity for self-renewal and their former differentiation potential, and do not preserve any traces of previous aging.

To check the "rejuvenated" characteristics of these cells, the researchers tested the reverse process. The rejuvenated iPSC cells were again differentiated to adult cells and compared to the original old cells, as well as to those obtained using human embryonic pluripotetent stem cells (hESC).

"Signs of aging were erased and the iPSCs obtained can produce functional cells, of any type, with an increased proliferation capacity and longevity," explains Jean-Marc Lemaitre who directs the Inserm AVENIR team.

…tested on cells taken from donors over the age of 100.

The results obtained led the research team to test the cocktail on even older cells taken from donors of 92, 94 and 96, and even up to 101 years old. "Our strategy worked on cells taken from donors in their 100s. The age of cells is definitely not a reprogramming barrier." He concluded. "This research paves the way for the therapeutic use of iPS, insofar as an ideal source of adult cells is provided, which are tolerated by the immune system and can repair organs or tissues in elderly patients." adds the researcher.

Inserm Transfert filed a patent request for this research.

Jean-Marc Lemaitre took advantage of the Avenir programme in 2006. This programme was created in 2001 by Inserm and provides a platform for young researchers, who have obtained their PhD in science, to set up and coordinate a team within an existing research structure. In 2009, Inserm and CNRS merged their respective programmes aimed at young researchers, and from that date on they have launched a joint call for proposals: Atip-Avenir.

Genes & Development, 1er Novembre 2011 Vol. 25, No. 21, doi:10.1101/gad.173922.111

Juliette Hardy | EurekAlert!
Further information:
http://www.inserm.fr

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>