Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Trying to eradicate a disease is a waste of money: researcher

15.04.2010
Biology research shows general health spending offers far better return in most affected areas

Eradicating smallpox was one of the greatest human accomplishments of the 20th century, but new research shows initiatives of this kind are not as good a use of health dollars as people might think.

McGill University Biologist Dr. Jonathan Davies explains that reducing the prevalence of diseases in areas most affected by them is a far more effective and efficient strategy than trying to eradicate them altogether, which is extremely difficult and costs billions of dollars. What's more, he said, new research shows that the most at-risk populations can be identified using just three variables.

A great diversity of local mammals and birds in a region, a large human population and ineffective disease control efforts point to a high-prevalence of disease. Climate plays a role in determining how many different kinds of diseases there are, but not how many people will suffer from them.

"Because disease is not restricted by political boundaries and local epidemics can rapidly transform into global pandemics, reducing prevalence in one part of the world will also benefit people everywhere," Davies explains. Recent flu outbreaks demonstrate how quickly diseases can spread to different parts of the world and the high cost of providing vaccines for millions of people. By targeting at-risk populations it might be possible to prevent global outbreaks and save money at the same time.

The research shows that efforts should be concentrated in countries with large populations, such as India and Pakistan, and areas where there is currently almost no spending on health care, such as Madagascar and much of eastern Africa.

In addition to the health benefits, the research team points out that disease affects human behaviour, the politics and political stability of countries, human fertility, global economies and more generally the course and dynamics of human history. The ramifications could be huge. "While it is clear that the distribution of diseases have, in the past, affected all aspects of human life, the degree to which these diseases will affect us in the future depends on the choices we make today in the global allocation of health-care dollars," Davies said.

Dr. Michael Gavin of Victoria University of Wellington, New Zealand, and Dr. Robert Dunn and Nyeema Harris, of North Carolina State University, contributed equally to this research, which was published online by the Proceedings of the Royal Society: B on April 15, 2010.

William Raillant-Clark | EurekAlert!
Further information:
http://www.biology.mcgill.ca/faculty/davies
http://www.mcgill.ca

Further reports about: Biology Research populations smallpox waste of money

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>