Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Equilibrium in the brain

08.09.2011
Excitation and inhibition remain balanced, even when the brain undergoes reorganization

Every second, the brain's nerve cells exchange many billions of synaptic impulses. Two kinds of synapses ensure that this flow of data is regulated: Excitatory synapses relay information from one cell to the next, while inhibitory synapses restrict the flow of information.

Scientists at the Max Planck Institute of Neurobiology in Martinsried could now show, in cooperation with colleagues from the Ruhr University of Bochum, that excitatory and inhibitory synapses remain balanced – even if the brain undergoes reorganization. Following a small retinal lesion, the nerve cells in the mouse brain responsible for this particular region no longer received (excitatory) information. As a result, the cells reduced the number of their inhibitory synapses by 30% in the space of just one day. This down-regulated balance between excitation and inhibition could indicate to the nerve cells that it is time for them to reconfigure to partially compensate for the loss of information.

Nerve cells are "information addicts". To process and store new information or to optimize already existing ways of processing it, minute appendages emerge continually from their surface and grow towards neighboring cells. At the end of these appendages, a synapse can develop via which the two nerve cells can then exchange information. Scientists at the Max Planck Institute of Neurobiology in Martinsried and the Ruhr University of Bochum were already able to show how quickly such nerve cells can reorganize themselves even in the adult brain, so that they are constantly able to process information: After a small retinal lesion, the nerve cells responsible for processing information from this area were "out of work". However, during the weeks to follow, the neurobiologists observed that these nerve cells increased the number of appendages sent towards their neighbouring cells. The cells that had been temporarily redundant were thus reconnecting themselves and could take on new tasks within the processing network.

However, optimal processing in the brain depends not only on the circulation of information but also on the direct inhibition of the flow of information at given points. What actually happens to these so-called inhibitory synapses when conditions change in the brain? Since this area has hardly received any detailed scientific attention, the team of scientists set out to examine the fate of these synapses in the nerve cells that receive no information on account of the small retinal lesion.

"One possible outcome was that inhibitory synapses remained, maybe to inhibit these cells which would otherwise pass on no, or only meaningless, information", explains Tara Keck, whose study has just been published in the scientific journal Neuron. However, the neurobiologists discovered that precisely the opposite was the case. They showed that those cells which had been rendered redundant reduced the number of their inhibitory synapses by about one third within one day. Such was the extent of this downsizing that the imbalance in the flow of information, brought about by the loss of the excitatory signals from the retina, was quashed. "The exciting thing about this result is the insight that the brain appears to be constantly seeking to maintain the balance between excitation and inhibition", Keck relates.

The scientists already have a theory as to the importance of this lower level of the established balance. "The decimation of the inhibitory synapses may act as a signal to neighbouring cells by advertising: Nerve cells seeking work. Please get in touch", reflects Mark Hübener, the head of the study. The scientists now hope to establish whether this is indeed the case and whether more inhibitory synapses are produced to regain the original balance once the rewiring with other cells is complete.

Original publication:

Tara Keck, Volker Scheuss, R. Irene Jacobsen, Corette J. Wierenga, Ulf T. Eysel, Tobias Bonhoeffer, Mark Hübener Loss of sensory input causes rapid structural changes of inhibitory neurons in adult mouse visual cortex, Neuron, online publication, September 8 2011

Stefanie Merker | EurekAlert!
Further information:
http://www.neuro.mpg.de

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>