Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Equilibrium in the brain

Excitation and inhibition remain balanced, even when the brain undergoes reorganization

Every second, the brain's nerve cells exchange many billions of synaptic impulses. Two kinds of synapses ensure that this flow of data is regulated: Excitatory synapses relay information from one cell to the next, while inhibitory synapses restrict the flow of information.

Scientists at the Max Planck Institute of Neurobiology in Martinsried could now show, in cooperation with colleagues from the Ruhr University of Bochum, that excitatory and inhibitory synapses remain balanced – even if the brain undergoes reorganization. Following a small retinal lesion, the nerve cells in the mouse brain responsible for this particular region no longer received (excitatory) information. As a result, the cells reduced the number of their inhibitory synapses by 30% in the space of just one day. This down-regulated balance between excitation and inhibition could indicate to the nerve cells that it is time for them to reconfigure to partially compensate for the loss of information.

Nerve cells are "information addicts". To process and store new information or to optimize already existing ways of processing it, minute appendages emerge continually from their surface and grow towards neighboring cells. At the end of these appendages, a synapse can develop via which the two nerve cells can then exchange information. Scientists at the Max Planck Institute of Neurobiology in Martinsried and the Ruhr University of Bochum were already able to show how quickly such nerve cells can reorganize themselves even in the adult brain, so that they are constantly able to process information: After a small retinal lesion, the nerve cells responsible for processing information from this area were "out of work". However, during the weeks to follow, the neurobiologists observed that these nerve cells increased the number of appendages sent towards their neighbouring cells. The cells that had been temporarily redundant were thus reconnecting themselves and could take on new tasks within the processing network.

However, optimal processing in the brain depends not only on the circulation of information but also on the direct inhibition of the flow of information at given points. What actually happens to these so-called inhibitory synapses when conditions change in the brain? Since this area has hardly received any detailed scientific attention, the team of scientists set out to examine the fate of these synapses in the nerve cells that receive no information on account of the small retinal lesion.

"One possible outcome was that inhibitory synapses remained, maybe to inhibit these cells which would otherwise pass on no, or only meaningless, information", explains Tara Keck, whose study has just been published in the scientific journal Neuron. However, the neurobiologists discovered that precisely the opposite was the case. They showed that those cells which had been rendered redundant reduced the number of their inhibitory synapses by about one third within one day. Such was the extent of this downsizing that the imbalance in the flow of information, brought about by the loss of the excitatory signals from the retina, was quashed. "The exciting thing about this result is the insight that the brain appears to be constantly seeking to maintain the balance between excitation and inhibition", Keck relates.

The scientists already have a theory as to the importance of this lower level of the established balance. "The decimation of the inhibitory synapses may act as a signal to neighbouring cells by advertising: Nerve cells seeking work. Please get in touch", reflects Mark Hübener, the head of the study. The scientists now hope to establish whether this is indeed the case and whether more inhibitory synapses are produced to regain the original balance once the rewiring with other cells is complete.

Original publication:

Tara Keck, Volker Scheuss, R. Irene Jacobsen, Corette J. Wierenga, Ulf T. Eysel, Tobias Bonhoeffer, Mark Hübener Loss of sensory input causes rapid structural changes of inhibitory neurons in adult mouse visual cortex, Neuron, online publication, September 8 2011

Stefanie Merker | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>