# Forum for Science, Industry and Business

Search our Site:

## New equation calculates cost of walking for first time

12.11.2010
Equation for how much energy we use when walking discovered

Any parent that takes their kid out for a walk knows that children tire more quickly than adults, but why is that? Do kids and small adults walk differently from taller people or do they tire faster for some other reason? Peter Weyand from Southern Methodist University, USA, is fascinated by the effect that body size has on physiological function.

'This goes back to Max Kleiber's work on resting metabolic rates for different sized animals. He found that the bigger you are the slower each gram of tissue uses energy,' explains Weyand, who adds, 'It's interesting to know how and why metabolism is regulated that way.' Intrigued by the question of why smaller people use more energy per kilogram body mass than larger individuals when walking, Weyand teamed up with Maurice Puyau and Nancy Butte, from the USDA/ARS Children's Nutrition Research Center at Baylor College of Medicine, and undergraduate Bethany Smith.

Together they decided to measure the metabolic rates of children and adults, ranging from 5 to 32 years old, weighing between 15.9kg and 88.7kg and ranging in height from 1.07m to 1.83m, to try to find out why larger people are more economical walkers than smaller people. Weyand and his colleagues publish their discovery that walkers of all heights use the same amount of energy per stride, making short people less economical because they take more steps. They also derive a fundamental equation to calculate exactly how much energy walkers use with direct applications in all walks of life. The team publishes its discovery on 12 November 2010 in The Journal of Experimental Biology at http://jeb.biologists.org/cgi/content/abstract/213/23/3972.

First Weyand and colleagues filmed male and female volunteers as they walked on a treadmill at speeds ranging from a slow 0.4m/s up to 1.9m/s. Meanwhile, they simultaneously measured the walkers' oxygen consumption and carbon dioxide production rates to obtain their total metabolic rate. Next the team calculated the amount of energy that each person used for walking by subtracting the basal metabolic rate (energy required to maintain the body's basic metabolic functions) from the total metabolic rate measured while walking. Finally, the team compared the way each person walked, measuring the walkers' stride lengths, stride durations and the proportion of each stride they spent in contact with the ground (duty factor) to find out if large and small people walk differently.

Analysing the walkers' styles, the team found that all of them moved in exactly the same way regardless of their height. Essentially, if you scaled a 5 year old up to 2m, the giant child would walk in exactly the same way as a 2m tall adult. So large people are not more economical because they walk differently from smaller people.

Next the team calculated the metabolic cost of a stride as each walker moved at their most economical pace and they discovered that walkers use the same amount of energy per stride regardless of their height. So, big people do not become more economical because they walk in a more economical style. Something else must account for their increased economy.

Finally, the four scientists plotted the walkers' heights against their minimum energy expenditure and they were amazed when they got a straight line with a gradient of almost -1. The walkers' energy costs were inversely proportional to their heights, with tall people walking more economically than short/smaller people because they have longer strides and have to take fewer steps to cover the same distance. So smaller people tire faster because each step costs the same and they have to take more steps to cover the same distance or travel at the same speed.

Based on this discovery the group derived an equation that can be used to calculate the energetic cost of walking. 'The equation allows you to use your height, weight and distance walked to determine how many calories you burn,' says Weyand. The equation could also be built into popular pedometers to provide users with a more realistic idea of how many calories they expend walking throughout the day. Finally, the team is keen to extend the equation to calculate metabolic costs at any speed. 'This has clinical applications, weight balance applications and the military is interested too because metabolic rates influence the physiological status of soldiers in the field,' explains Weyand.

IF REPORTING ON THIS STORY, PLEASE MENTION THE JOURNAL OF EXPERIMENTAL BIOLOGY AS THE SOURCE AND, IF REPORTING ONLINE, PLEASE CARRY A LINK TO: http://jeb.biologists.org

Reference: Weyand, P. G., Smith, B. R., Puyau, M. R. and Butte, N. F. (2010). The mass-specific energy cost of human walking is set by stature. J. Exp. Biol. 213, 3972-3979.

THIS ARTICLE APPEARES IN THE JOURNAL OF EXPERIMENTAL BIOLOGY ON: 12 November 2010. THE PAPER IS EMBARGOED until 00:15EST (05:15 GMT) 12 NOVEMBER 2010

Further information:
http://www.biologists.com

Further reports about: Energy clinical applications cost of walking metabolic rate

### More articles from Life Sciences:

Tag it EASI – a new method for accurate protein analysis
19.06.2018 | Max-Planck-Institut für Biochemie

How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

### Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

### Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

### Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

### Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

### Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige