Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Epstein-Barr virus predicts outcome in nasopharyngeal carcinoma

24.09.2008
Researchers in Hong Kong report that testing patient blood for DNA from Epstein-Barr virus (EBV) during treatment for nasopharyngeal carcinoma effectively predicts clinical outcome. A biomarker test like this, when perfected, could identify patients whose treatment could be intensified after a month or so of standard therapy as well as those who might benefit from lighter treatment.

The study, presented at the American Association for Cancer Research Molecular Diagnostics in Cancer Therapeutic Development meeting held here September 22-25, highlights the strong link between the virus and this cancer, which is common in Southern China and also develops in Chinese immigrants It further suggests that genetic levels of EBV should be assessed before and during treatment, not just after therapy, as it is now.

"We found that patients with undetectable EBV DNA mid-course through treatment had a greatly reduced risk of developing cancer recurrence two years after treatment, compared with patients with detectable EBV DNA," said the study's senior investigator, Anthony Chan, M.D., director of the Cancer Center at the Chinese University of Hong Kong.

Although EBV is associated with nasopharynx cancer, which develops in the upper area of the throat, a causal relationship hasn't been established, Chan says. Still, cancer cells contain EBV genetic material, which leaks into the bloodstream and can be detected using DNA tests. "That means a larger number of nasopharynx cancer cells in the body would give rise to a larger amount of EBV genetic material in the blood circulation, and so the EBV DNA level is a marker of the extent of cancer."

Researchers know that the amount of EBV DNA found after treatment is a recognized prognostic marker of survival because residual detectable EBV DNA "implies incomplete killing of cancer and thus a poor prognosis," Chan said. The question the researchers investigated is whether there is a way to identify patients with such a viral load before treatment is finished so that more aggressive therapy might be instituted.

"We need to know what to do for those patients with residual EBV. These patients usually do not have clinical evidence of cancer at that point and the residual cancer burden is at a microscopic level. Any extra treatment would be for undetectable cancer, and we need to prove that such treatment has an impact on improving survival," Chan said.

In this study, researchers tested 108 patients with advanced stage cancer for EBV DNA before the start of treatment, after a month of therapy, and then within three months after completion of treatment, and matched these levels to outcomes two-years later. They found that 94 percent of patients had detectable EBV DNA before therapy, but that it became undetectable in 54 percent of patients midway through treatment. The 42 percent of patients who had both low pretreatment and undetectable four-week viral levels constituted a "good risk group" because their recurrence rate was only nine percent.

Conversely, they found that levels detected after four weeks of treatment correlated with detectable post-treatment amounts, with an almost threefold greater risk of cancer recurrence and threefold higher risk of distant metastasis at two years.

"It is possible to test for EBV DNA levels at any time point, so based on further validation studies, we may be able to use biomarker levels at several time points to guide clinical therapy," Chan said.

Jeremy Moore | EurekAlert!
Further information:
http://www.aacr.org

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>