Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Epstein-Barr virus predicts outcome in nasopharyngeal carcinoma

Researchers in Hong Kong report that testing patient blood for DNA from Epstein-Barr virus (EBV) during treatment for nasopharyngeal carcinoma effectively predicts clinical outcome. A biomarker test like this, when perfected, could identify patients whose treatment could be intensified after a month or so of standard therapy as well as those who might benefit from lighter treatment.

The study, presented at the American Association for Cancer Research Molecular Diagnostics in Cancer Therapeutic Development meeting held here September 22-25, highlights the strong link between the virus and this cancer, which is common in Southern China and also develops in Chinese immigrants It further suggests that genetic levels of EBV should be assessed before and during treatment, not just after therapy, as it is now.

"We found that patients with undetectable EBV DNA mid-course through treatment had a greatly reduced risk of developing cancer recurrence two years after treatment, compared with patients with detectable EBV DNA," said the study's senior investigator, Anthony Chan, M.D., director of the Cancer Center at the Chinese University of Hong Kong.

Although EBV is associated with nasopharynx cancer, which develops in the upper area of the throat, a causal relationship hasn't been established, Chan says. Still, cancer cells contain EBV genetic material, which leaks into the bloodstream and can be detected using DNA tests. "That means a larger number of nasopharynx cancer cells in the body would give rise to a larger amount of EBV genetic material in the blood circulation, and so the EBV DNA level is a marker of the extent of cancer."

Researchers know that the amount of EBV DNA found after treatment is a recognized prognostic marker of survival because residual detectable EBV DNA "implies incomplete killing of cancer and thus a poor prognosis," Chan said. The question the researchers investigated is whether there is a way to identify patients with such a viral load before treatment is finished so that more aggressive therapy might be instituted.

"We need to know what to do for those patients with residual EBV. These patients usually do not have clinical evidence of cancer at that point and the residual cancer burden is at a microscopic level. Any extra treatment would be for undetectable cancer, and we need to prove that such treatment has an impact on improving survival," Chan said.

In this study, researchers tested 108 patients with advanced stage cancer for EBV DNA before the start of treatment, after a month of therapy, and then within three months after completion of treatment, and matched these levels to outcomes two-years later. They found that 94 percent of patients had detectable EBV DNA before therapy, but that it became undetectable in 54 percent of patients midway through treatment. The 42 percent of patients who had both low pretreatment and undetectable four-week viral levels constituted a "good risk group" because their recurrence rate was only nine percent.

Conversely, they found that levels detected after four weeks of treatment correlated with detectable post-treatment amounts, with an almost threefold greater risk of cancer recurrence and threefold higher risk of distant metastasis at two years.

"It is possible to test for EBV DNA levels at any time point, so based on further validation studies, we may be able to use biomarker levels at several time points to guide clinical therapy," Chan said.

Jeremy Moore | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>