Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Eppendorf® introduces a single-use bioreactor for microbial applications

27.03.2013
With the introduction of the new BioBLU® 0.3f, Eppendorf® offers for the first time a fully-instrumented single-use bioreactor designed specifically for microbial applications.

The BioBLU 0.3f joins the BioBLU 0.3c which was presented last year and is designed for the cultivation of animal and human cells. Both the BioBLU 0.3c and BioBLU 0.3f are specifically designed for use with the compact DASbox® mini bioreactor system.





Eppendorf’s DASbox system is a unique mini bioreactor system for parallel operation of 4, 8 or more mini-bioreactors and well suited for Design of Experiment (DoE), bioprocess development screening and for use as a scaledown model. With the new BioBLU 0.3f, Eppendorf is paving the way for users of conventional microbial-based biotechnology to take advantage of, the time and cost benefits of single-use bioreactor technology, such as in pharmaceutical product development.

The fully-instrumented BioBLU 0.3f single-use bioreactor features working volumes of 65 to 250 mL and meets all requirements for microbial applications. The rigid-wall, single-use bioreactor includes two Rushton impellers achieving oxygen intake levels comparable to industrial glass and stainless steel bioreactors. All critical parameters, such as temperature, pH and dissolved oxygen, can be monitored and regulated using industry standard sensors. Integrated dip tubes permit the controlled feeding of liquids, easy sampling and massflow-controlled gassing. The specially developed, magnetically-coupled overhead drive safely operates up to 2,000 rpm, ensuring that the BioBLU 0.3f supports the high agitation rates required for microbial applications.

The innovative liquid-free Peltier technology ensures that the temperature of the culture is precisely controlled, even with modern high cell density processes that generate extraordinarily high levels of heat. The integrated Eppendorf technologies represent another milestone in porting the requirements of conventional bioreactor technology to single-use systems.

All wetted materials in the BioBLU 0.3f are USP Class VI certified and conform to United States Food and Drug Administration requirements. The development of the BioBLU 0.3f single-use bioreactor for microbial applications once again highlights the strong bioprocessing synergies that exist between Eppendorf, New Brunswick™ and DASGIP®, which was incorporated into the Eppendorf family in early 2012. Combining Eppendorf's expertise in polymer processing with DASGIP's engineering ingenuity in bioreactor design has allowed Eppendorf to expand its single-use bioreactor portfolio for microbial applications.

"We're pleased to be taking a new direction in single-use bioreactor technologies," says Dr. Matthias Arnold, Managing Director of DASGIP Information and Process Technology GmbH. "The physical requirements placed on single-use systems for microbial applications is much higher than the demands that are placed on cell culture processes, the conventional field of application for disposable bioreactors. By working together with the polymer experts at Eppendorf, we managed to overcome these hurdles, and as a result were able to optimally match material, design and functionality at the highest level of quality."

About Eppendorf:

Eppendorf is a leading life science company that develops and sells instruments, consumables, and services for liquid-, sample-, and cell handling in laboratories worldwide. Its product range includes pipettes and automated pipetting systems, dispensers, centrifuges, mixers, spectrometers, and DNA amplification equipment as well as ultra-low temperature freezers, fermentors, bioreactors and comprehensive bioprocess software, CO2 incubators, shakers, and cell manipulation systems. Associated consumables like pipette tips, test tubes, microtiter plates, and disposable bioreactors complement the instruments for highest quality workflow solutions. Eppendorf products are most broadly used in academic and commercial research laboratories, e.g., in companies from the pharmaceutical and biotechnological as well as the chemical and food industries. They are also aimed at clinical and environmental analysis laboratories, forensics, and at industrial laboratories performing process analysis, production, and quality assurance. Eppendorf was founded in Hamburg, Germany in 1945 and has about 2,700 employees worldwide. The company has subsidiaries in 25 countries and is represented in all other markets by distributors.

Contact:
Claudia M. Hüther-Franken,
Eppendorf AG Bioprocess Center Europe,
Tel: +49 2461 980 -471, huether.c@eppendorf.de

Christiane Schlottbom | Eppendorf AG
Further information:
http://www.eppendorf.com
http://www.eppendorf.com/dasgip

More articles from Life Sciences:

nachricht Bacteria as pacemaker for the intestine
22.11.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Researchers identify how bacterium survives in oxygen-poor environments
22.11.2017 | Columbia University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>