Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Eppendorf® introduces a single-use bioreactor for microbial applications

27.03.2013
With the introduction of the new BioBLU® 0.3f, Eppendorf® offers for the first time a fully-instrumented single-use bioreactor designed specifically for microbial applications.

The BioBLU 0.3f joins the BioBLU 0.3c which was presented last year and is designed for the cultivation of animal and human cells. Both the BioBLU 0.3c and BioBLU 0.3f are specifically designed for use with the compact DASbox® mini bioreactor system.





Eppendorf’s DASbox system is a unique mini bioreactor system for parallel operation of 4, 8 or more mini-bioreactors and well suited for Design of Experiment (DoE), bioprocess development screening and for use as a scaledown model. With the new BioBLU 0.3f, Eppendorf is paving the way for users of conventional microbial-based biotechnology to take advantage of, the time and cost benefits of single-use bioreactor technology, such as in pharmaceutical product development.

The fully-instrumented BioBLU 0.3f single-use bioreactor features working volumes of 65 to 250 mL and meets all requirements for microbial applications. The rigid-wall, single-use bioreactor includes two Rushton impellers achieving oxygen intake levels comparable to industrial glass and stainless steel bioreactors. All critical parameters, such as temperature, pH and dissolved oxygen, can be monitored and regulated using industry standard sensors. Integrated dip tubes permit the controlled feeding of liquids, easy sampling and massflow-controlled gassing. The specially developed, magnetically-coupled overhead drive safely operates up to 2,000 rpm, ensuring that the BioBLU 0.3f supports the high agitation rates required for microbial applications.

The innovative liquid-free Peltier technology ensures that the temperature of the culture is precisely controlled, even with modern high cell density processes that generate extraordinarily high levels of heat. The integrated Eppendorf technologies represent another milestone in porting the requirements of conventional bioreactor technology to single-use systems.

All wetted materials in the BioBLU 0.3f are USP Class VI certified and conform to United States Food and Drug Administration requirements. The development of the BioBLU 0.3f single-use bioreactor for microbial applications once again highlights the strong bioprocessing synergies that exist between Eppendorf, New Brunswick™ and DASGIP®, which was incorporated into the Eppendorf family in early 2012. Combining Eppendorf's expertise in polymer processing with DASGIP's engineering ingenuity in bioreactor design has allowed Eppendorf to expand its single-use bioreactor portfolio for microbial applications.

"We're pleased to be taking a new direction in single-use bioreactor technologies," says Dr. Matthias Arnold, Managing Director of DASGIP Information and Process Technology GmbH. "The physical requirements placed on single-use systems for microbial applications is much higher than the demands that are placed on cell culture processes, the conventional field of application for disposable bioreactors. By working together with the polymer experts at Eppendorf, we managed to overcome these hurdles, and as a result were able to optimally match material, design and functionality at the highest level of quality."

About Eppendorf:

Eppendorf is a leading life science company that develops and sells instruments, consumables, and services for liquid-, sample-, and cell handling in laboratories worldwide. Its product range includes pipettes and automated pipetting systems, dispensers, centrifuges, mixers, spectrometers, and DNA amplification equipment as well as ultra-low temperature freezers, fermentors, bioreactors and comprehensive bioprocess software, CO2 incubators, shakers, and cell manipulation systems. Associated consumables like pipette tips, test tubes, microtiter plates, and disposable bioreactors complement the instruments for highest quality workflow solutions. Eppendorf products are most broadly used in academic and commercial research laboratories, e.g., in companies from the pharmaceutical and biotechnological as well as the chemical and food industries. They are also aimed at clinical and environmental analysis laboratories, forensics, and at industrial laboratories performing process analysis, production, and quality assurance. Eppendorf was founded in Hamburg, Germany in 1945 and has about 2,700 employees worldwide. The company has subsidiaries in 25 countries and is represented in all other markets by distributors.

Contact:
Claudia M. Hüther-Franken,
Eppendorf AG Bioprocess Center Europe,
Tel: +49 2461 980 -471, huether.c@eppendorf.de

Christiane Schlottbom | Eppendorf AG
Further information:
http://www.eppendorf.com
http://www.eppendorf.com/dasgip

More articles from Life Sciences:

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht Identified the component that allows a lethal bacteria to spread resistance to antibiotics
27.07.2017 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>