Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Epileptic seizures may be linked to an ancient gene family

02.08.2010
New research points to a genetic route to understanding and treating epilepsy. Timothy Jegla, an assistant professor of biology at Penn State University, has identified an ancient gene family that plays a role in regulating the excitability of nerves within the brain.

"In healthy people, nerves do not fire excessively in response to small stimuli. This function allows us to focus on what really matters. Nerve cells maintain a threshold between rest and excitement, and a stimulus has to cross this threshold to cause the nerve cells to fire," Jegla explained. "However, when this threshold is set too low, neurons can become hyperactive and fire in synchrony. As excessive firing spreads across the brain, the result is an epileptic seizure."

Managing this delicate rest-excitement balance are ion channels -- neuronal "gates" that control the flow of electrical signals between cells. While sodium and calcium channels help to excite neurons, potassium channels help to suppress signaling between cells, increasing the threshold at which nerves fire. However, the genetic mechanisms that control the potassium channels and set this threshold are not fully understood. Jegla's team focused on a particular potassium-channel gene -- called Kv12.2 -- that is active in resting nerve cells and is expressed in brain regions prone to seizure. "We decided that Kv12.2 was a good candidate for study because it is part of an old gene family that has been conserved throughout animal evolution," Jegla said. "This ancient gene family probably first appeared in the genomes of sea-dwelling creatures prior to the Cambrian era about 542-million years ago. It is still with us and doing something very important in present-day animals." Previous studies have suggested that the Kv12.2 potassium channel has a role in spatial memory, but Jegla and his team focused on how it might be related to seizure disorders.

In collaboration with Jeffrey Noebels at Baylor College of Medicine, the team used an electroencephalography (EEG) device to monitor the brains of mice. They found that mice missing the Kv12.2 gene did indeed have frequent seizures, albeit without convulsions. The team then stimulated mice with a chemical that induces convulsive seizures. They found that normal mice had a much higher convulsive-seizure threshold than mice with a defective Kv12.2 gene. The team also found the same results when they used a chemical inhibitor to block the Kv12.2 potassium channel in normal mice.

"In mice without a functioning Kv12.2 gene, nerve cells had abnormally low firing thresholds. Even small stimuli caused seizures," Jegla explained. "We think that this potassium channel plays a role in the brain's ability to remain 'quiet' and to respond selectively to strong stimuli."

Jegla hopes to open up new avenues of epilepsy research by studying whether activation of the Kv12.2 potassium channel in normal animals can block seizures. "Ion-channel defects have been identified in inherited seizure disorders, but many types of epilepsy don't have a genetic cause to begin with," Jegla explained. "They are often caused by environmental factors, such as a brain injury or a high fever. However, the most effective drugs used to treat epilepsy target ion channels. If we can learn more about how ion channels influence seizure thresholds, we should be able to develop better drugs with fewer side effects."

In addition to Jegla and Noebels, other scientists who contributed to this research include Xiaofei Zhang, Federica Bertaso, Karsten Baumgärtel, and Sinead M. Clancy of the Scripps Research Institute; Jong W. Yoo of the Baylor College of Medicine; and Van Lee, Cynthia Cienfuegos, Carly Wilmot, Jacqueline Avis, Truc Hunyh, Catherine Daguia, and Christian Schmedt of the Genomics Institute of the Novartis Research Foundation. This research was funded by the National Institutes of Health through its National Institute for Neurological Disorders and Stroke.

CONTACT Barbara Kennedy (PIO): 814-863-4682, science@psu.edu

Barbara K. Kennedy | EurekAlert!
Further information:
http://www.psu.edu

Further reports about: Kv12 Medicine Noebels epileptic nerve cell potassium channel seizure disorders

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>