Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Epileptic seizures may be linked to an ancient gene family

02.08.2010
New research points to a genetic route to understanding and treating epilepsy. Timothy Jegla, an assistant professor of biology at Penn State University, has identified an ancient gene family that plays a role in regulating the excitability of nerves within the brain.

"In healthy people, nerves do not fire excessively in response to small stimuli. This function allows us to focus on what really matters. Nerve cells maintain a threshold between rest and excitement, and a stimulus has to cross this threshold to cause the nerve cells to fire," Jegla explained. "However, when this threshold is set too low, neurons can become hyperactive and fire in synchrony. As excessive firing spreads across the brain, the result is an epileptic seizure."

Managing this delicate rest-excitement balance are ion channels -- neuronal "gates" that control the flow of electrical signals between cells. While sodium and calcium channels help to excite neurons, potassium channels help to suppress signaling between cells, increasing the threshold at which nerves fire. However, the genetic mechanisms that control the potassium channels and set this threshold are not fully understood. Jegla's team focused on a particular potassium-channel gene -- called Kv12.2 -- that is active in resting nerve cells and is expressed in brain regions prone to seizure. "We decided that Kv12.2 was a good candidate for study because it is part of an old gene family that has been conserved throughout animal evolution," Jegla said. "This ancient gene family probably first appeared in the genomes of sea-dwelling creatures prior to the Cambrian era about 542-million years ago. It is still with us and doing something very important in present-day animals." Previous studies have suggested that the Kv12.2 potassium channel has a role in spatial memory, but Jegla and his team focused on how it might be related to seizure disorders.

In collaboration with Jeffrey Noebels at Baylor College of Medicine, the team used an electroencephalography (EEG) device to monitor the brains of mice. They found that mice missing the Kv12.2 gene did indeed have frequent seizures, albeit without convulsions. The team then stimulated mice with a chemical that induces convulsive seizures. They found that normal mice had a much higher convulsive-seizure threshold than mice with a defective Kv12.2 gene. The team also found the same results when they used a chemical inhibitor to block the Kv12.2 potassium channel in normal mice.

"In mice without a functioning Kv12.2 gene, nerve cells had abnormally low firing thresholds. Even small stimuli caused seizures," Jegla explained. "We think that this potassium channel plays a role in the brain's ability to remain 'quiet' and to respond selectively to strong stimuli."

Jegla hopes to open up new avenues of epilepsy research by studying whether activation of the Kv12.2 potassium channel in normal animals can block seizures. "Ion-channel defects have been identified in inherited seizure disorders, but many types of epilepsy don't have a genetic cause to begin with," Jegla explained. "They are often caused by environmental factors, such as a brain injury or a high fever. However, the most effective drugs used to treat epilepsy target ion channels. If we can learn more about how ion channels influence seizure thresholds, we should be able to develop better drugs with fewer side effects."

In addition to Jegla and Noebels, other scientists who contributed to this research include Xiaofei Zhang, Federica Bertaso, Karsten Baumgärtel, and Sinead M. Clancy of the Scripps Research Institute; Jong W. Yoo of the Baylor College of Medicine; and Van Lee, Cynthia Cienfuegos, Carly Wilmot, Jacqueline Avis, Truc Hunyh, Catherine Daguia, and Christian Schmedt of the Genomics Institute of the Novartis Research Foundation. This research was funded by the National Institutes of Health through its National Institute for Neurological Disorders and Stroke.

CONTACT Barbara Kennedy (PIO): 814-863-4682, science@psu.edu

Barbara K. Kennedy | EurekAlert!
Further information:
http://www.psu.edu

Further reports about: Kv12 Medicine Noebels epileptic nerve cell potassium channel seizure disorders

More articles from Life Sciences:

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

nachricht Research reveals how order first appears in liquid crystals
23.05.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>