Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Epilepsy halted in mice

04.08.2009
Scientists at Leeds have prevented epilepsy caused by a gene defect from being passed on to mice offspring – an achievement which may herald new therapies for people suffering from the condition.

The study is published today in the US journal Proceedings of the National Academy of Sciences (PNAS). It offers, for the first time, irrefutable proof that a faulty version of a gene known as Atp1a3 is responsible for causing epileptic seizures in mice.

Says lead researcher Dr Steve Clapcote, of the University of Leeds' Faculty of Biological Sciences: "Atp1a3 makes an enzyme called a sodium-potassium pump that regulates levels of sodium and potassium in the brain's nerve cells. An imbalance of sodium and potassium levels has long been suspected to lead to epileptic seizures, but our study is the first to show beyond any doubt that a defect in this gene is responsible."

Epilepsy is a common neurological condition that affects almost 1 in every 200 people, and yet the causes are unknown in the majority of cases. Current drug treatments are ineffective in around one third of epilepsy patients.

To prove the gene's role, the team studied a special strain of mouse, called Myshkin, which has an inherited form of severe epilepsy. The researchers found that these mice have a defective Atp1a3 gene, which led to them all having spontaneous seizures displaying the characteristic brain activity of epilepsy. To confirm that the seizures were epileptic, the team showed that mice treated with an antiepileptic drug, valproic acid, had fewer, less severe seizures.

When the epileptic Myshkin strain was bred with a transgenic mouse strain that has an extra copy of the normal Atp1a3 gene, the additional normal gene counteracted the faulty gene - resulting in offspring which were completely free from epilepsy.

"Our study has identified a new way in which epilepsy can be caused and prevented in mice, and therefore it may provide clues to potential causes, therapies and preventive measures in human epilepsy," says Dr Clapcote.

"Our results are very promising, but there's a long way to go before this research could yield new antiepileptic therapies. However, the human ATP1A3 gene matches the mouse version of the gene by more than 99 per cent, so we've already started to screen DNA samples from epilepsy patients to investigate whether ATP1A3 gene defects are involved the human condition."

Commenting on the research, Delphine van der Pauw, Research and Information Executive at Epilepsy Research UK said: "These results are promising. Not only have Dr Clapcote and his team highlighted a new culprit gene for epilepsy in mice; but they have also shown how normal activity of the affected sodium-potassium pump can be restored. If the findings can be repeated in human studies, new avenues for the prevention and treatment of inherited epilepsy will be opened."

Jo Kelly | EurekAlert!
Further information:
http://www.leeds.ac.uk

More articles from Life Sciences:

nachricht Show me your leaves - Health check for urban trees
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Liver Cancer: Lipid Synthesis Promotes Tumor Formation
12.12.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

Liver Cancer: Lipid Synthesis Promotes Tumor Formation

12.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>