Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Epilepsy halted in mice

04.08.2009
Scientists at Leeds have prevented epilepsy caused by a gene defect from being passed on to mice offspring – an achievement which may herald new therapies for people suffering from the condition.

The study is published today in the US journal Proceedings of the National Academy of Sciences (PNAS). It offers, for the first time, irrefutable proof that a faulty version of a gene known as Atp1a3 is responsible for causing epileptic seizures in mice.

Says lead researcher Dr Steve Clapcote, of the University of Leeds' Faculty of Biological Sciences: "Atp1a3 makes an enzyme called a sodium-potassium pump that regulates levels of sodium and potassium in the brain's nerve cells. An imbalance of sodium and potassium levels has long been suspected to lead to epileptic seizures, but our study is the first to show beyond any doubt that a defect in this gene is responsible."

Epilepsy is a common neurological condition that affects almost 1 in every 200 people, and yet the causes are unknown in the majority of cases. Current drug treatments are ineffective in around one third of epilepsy patients.

To prove the gene's role, the team studied a special strain of mouse, called Myshkin, which has an inherited form of severe epilepsy. The researchers found that these mice have a defective Atp1a3 gene, which led to them all having spontaneous seizures displaying the characteristic brain activity of epilepsy. To confirm that the seizures were epileptic, the team showed that mice treated with an antiepileptic drug, valproic acid, had fewer, less severe seizures.

When the epileptic Myshkin strain was bred with a transgenic mouse strain that has an extra copy of the normal Atp1a3 gene, the additional normal gene counteracted the faulty gene - resulting in offspring which were completely free from epilepsy.

"Our study has identified a new way in which epilepsy can be caused and prevented in mice, and therefore it may provide clues to potential causes, therapies and preventive measures in human epilepsy," says Dr Clapcote.

"Our results are very promising, but there's a long way to go before this research could yield new antiepileptic therapies. However, the human ATP1A3 gene matches the mouse version of the gene by more than 99 per cent, so we've already started to screen DNA samples from epilepsy patients to investigate whether ATP1A3 gene defects are involved the human condition."

Commenting on the research, Delphine van der Pauw, Research and Information Executive at Epilepsy Research UK said: "These results are promising. Not only have Dr Clapcote and his team highlighted a new culprit gene for epilepsy in mice; but they have also shown how normal activity of the affected sodium-potassium pump can be restored. If the findings can be repeated in human studies, new avenues for the prevention and treatment of inherited epilepsy will be opened."

Jo Kelly | EurekAlert!
Further information:
http://www.leeds.ac.uk

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>