Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Epilepsy drug shows potential for Alzheimer’s treatment

08.12.2008
A drug commonly used to treat epilepsy could help clear the plaques in the brain associated with Alzheimer’s disease, according to researchers at the University of Leeds. The plaques are known to lead to the progressive death of nerve cells in the brain linked to many forms of dementia.

Sodium valproate - which is marketed as the anti-seizure drug Epilim - has been shown by scientists at the University of Leeds to reactivate the body’s own defences against a small protein called amyloid beta peptide, which is the main component of the brain plaques characteristic in Alzheimer’s. Their work was funded by the Medical Research Council.

“The fact that we’ve been able to show that a well-established, safe and relatively inexpensive drug could help treat Alzheimer’s is an extremely exciting development,” says lead researcher Professor Tony Turner from the University’s Faculty of Biological Sciences. “We hope colleagues will be able to progress this research with clinical trials in the near future.”

Alzheimer’s disease is the most common form of dementia and has no cure. In the UK today there a half a million people living with Alzheimer’s – and this is likely to double within a generation unless new treatments are found.

Sodium valproate has been used for many years to suppress epileptic seizures and the many sufferers of epilepsy have been taking the drug for decades with few side effects.

The development of Alzheimer’s is widely believed to be caused by the gradual accumulation in the brain of amyloid-beta peptide which is toxic to nerve cells. This is thought to be caused by a key enzyme called neprilysin or NEP gradually switching off in later life. One of NEP’s roles is to clear the toxic peptide from the brain, and plaques begin to form as it gradually switches off, leading to the death of the brain’s nerve cells.

The research team examined changes in chromatin – the ‘packaging’ that genes are contained within - and surmised that these changes might be involved in switching off NEP. The team found clear differences (acetylation) in key proteins within the chromatin when they compared normal nerve cells against those that failed to produce NEP.

“From there it was relatively simple to stimulate the expression of NEP with sodium valproate, which was seen to prevent the acetylation,” says Professor Turner. “We were elated when we saw the results.”

Professor Tony Turner, together with former colleague Dr John Kenny, first discovered NEP in the brain. His current research team comprises Dr Nikolai Belyaev, Dr Natalia Nalivaeva and Natalia Makova.

Jo Kelly | alfa
Further information:
http://www.leeds.ac.uk

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>