Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Epilepsy at the Molecular Level

10.02.2016

Researchers study the link between malformations of the cerebral cortex and the occurrence of the neurological disease

Why does a structural irregularity in the temporal lobe make humans more susceptible to epileptic seizures?


The detail of the cerebral cortext shows the myelin fibers that form an electrically insulating layer around the nerve cells (green/violet). Source: Cerebral Cortex/Oxford University Press

Experts have been searching for the answer to this question for a long time. A group of scientists at the Freiburg University Medical Center consisting of members of the University of Freiburg’s Cluster of Excellence Brain Links–Brain Tools has published a study involving a comparison of nearly 30,000 genes in the journal Cerebral Cortex.

The team describes pathological processes in the brain tissue in developmental disorders of the cerebral cortex. The study is the largest of its kind to date. The authors of the study see the research as an excellent example of cooperation between fundamental researchers and clinicians.

Pathological changes in the cerebral cortex referred to as “focal cortical dysplasias” are present in approximately 25 percent of epilepsies limited to particular brain areas. Patients with these dysplasias are often resistant to antiepileptic drugs. The most effective treatment is currently to remove the affected areas in an operation, after which the epileptic seizures generally stop happening.

Up to now, however, researchers could only speculate about how the abnormal structure of the cerebral cortex is linked at the molecular level to the occurrence of epilepsy. To investigate this connection, Freiburg neurobiologist Prof. Dr. Carola Haas and her team compared gene expression in malformed brain tissue with that in epileptic, non-malformed tissue.

To do so, they used so-called microarrays, a chip technology originally developed for the semiconductor industry. In this way, Haas and her colleagues succeeded in demonstrating that the factors less frequently expressed in diseased tissue are primarily those responsible for the formation of myelin. Myelin is an electrically insulating layer surrounding nerve cells. Additional analyses showed that the structure of this layer appears to be broken open and in disarray.

This could be an indication that the conduction of the stimuli is considerably impaired in the affected brain region. “The disposition for epilepsy in patients with the malformation investigated in our study could potentially be explained by a resulting electrical over-excitability of this nerve fiber sheath,” says Haas. The group at the Department of Neurosurgery now aims to conduct further experiments to investigate what precisely happens in the malformed tissue during the development of myelin.

Original publication:
C. Donkels, D. Pfeifer, P. Janz, S. Huber, J. Nakagawa, M. Prinz, A. Schulze-Bonhage, A. Weyerbrock, J. Zentner, C. Haas (2016): Whole Transciptome Screening Reveals Myelination Deficits in Dysplastic Human Temporal Neocortex. In: Cerebral Cortex., pp. 1–15.

Contact:
Prof. Dr. Carola Haas
Section for the Foundations of Epileptic Diseases
Department of Neurosurgery of the Medical Center – University of Freiburg
Phone: +49 (0)761/270-52950
E-Mail: carola.haas@uniklinik-freiburg.de

Levin Sottru
Science Communicator
Cluster of Excellence BrainLinks–BrainTools
University of Freiburg
Phone: +49 (0)761/203-67721
E-Mail: sottru@blbt.uni-freiburg.de

Weitere Informationen:

https://www.pr.uni-freiburg.de/pm/2016/pm.2016-02-09.18-en?set_language=en

Rudolf-Werner Dreier | Albert-Ludwigs-Universität Freiburg im Breisgau

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>