Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Epilepsy at the Molecular Level

10.02.2016

Researchers study the link between malformations of the cerebral cortex and the occurrence of the neurological disease

Why does a structural irregularity in the temporal lobe make humans more susceptible to epileptic seizures?


The detail of the cerebral cortext shows the myelin fibers that form an electrically insulating layer around the nerve cells (green/violet). Source: Cerebral Cortex/Oxford University Press

Experts have been searching for the answer to this question for a long time. A group of scientists at the Freiburg University Medical Center consisting of members of the University of Freiburg’s Cluster of Excellence Brain Links–Brain Tools has published a study involving a comparison of nearly 30,000 genes in the journal Cerebral Cortex.

The team describes pathological processes in the brain tissue in developmental disorders of the cerebral cortex. The study is the largest of its kind to date. The authors of the study see the research as an excellent example of cooperation between fundamental researchers and clinicians.

Pathological changes in the cerebral cortex referred to as “focal cortical dysplasias” are present in approximately 25 percent of epilepsies limited to particular brain areas. Patients with these dysplasias are often resistant to antiepileptic drugs. The most effective treatment is currently to remove the affected areas in an operation, after which the epileptic seizures generally stop happening.

Up to now, however, researchers could only speculate about how the abnormal structure of the cerebral cortex is linked at the molecular level to the occurrence of epilepsy. To investigate this connection, Freiburg neurobiologist Prof. Dr. Carola Haas and her team compared gene expression in malformed brain tissue with that in epileptic, non-malformed tissue.

To do so, they used so-called microarrays, a chip technology originally developed for the semiconductor industry. In this way, Haas and her colleagues succeeded in demonstrating that the factors less frequently expressed in diseased tissue are primarily those responsible for the formation of myelin. Myelin is an electrically insulating layer surrounding nerve cells. Additional analyses showed that the structure of this layer appears to be broken open and in disarray.

This could be an indication that the conduction of the stimuli is considerably impaired in the affected brain region. “The disposition for epilepsy in patients with the malformation investigated in our study could potentially be explained by a resulting electrical over-excitability of this nerve fiber sheath,” says Haas. The group at the Department of Neurosurgery now aims to conduct further experiments to investigate what precisely happens in the malformed tissue during the development of myelin.

Original publication:
C. Donkels, D. Pfeifer, P. Janz, S. Huber, J. Nakagawa, M. Prinz, A. Schulze-Bonhage, A. Weyerbrock, J. Zentner, C. Haas (2016): Whole Transciptome Screening Reveals Myelination Deficits in Dysplastic Human Temporal Neocortex. In: Cerebral Cortex., pp. 1–15.

Contact:
Prof. Dr. Carola Haas
Section for the Foundations of Epileptic Diseases
Department of Neurosurgery of the Medical Center – University of Freiburg
Phone: +49 (0)761/270-52950
E-Mail: carola.haas@uniklinik-freiburg.de

Levin Sottru
Science Communicator
Cluster of Excellence BrainLinks–BrainTools
University of Freiburg
Phone: +49 (0)761/203-67721
E-Mail: sottru@blbt.uni-freiburg.de

Weitere Informationen:

https://www.pr.uni-freiburg.de/pm/2016/pm.2016-02-09.18-en?set_language=en

Rudolf-Werner Dreier | Albert-Ludwigs-Universität Freiburg im Breisgau

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>