Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Epigenomics Analysis Reveals Surprising New Clues to Insulin Resistance

07.01.2015

Findings offer promising new direction for drug development

In studying the cellular structure and function of insulin, a research team led by investigators at Beth Israel Deaconess Medical Center (BIDMC) has uncovered previously unknown steps in the development of insulin resistance, a hallmark of type 2 diabetes.

Reported in the January 2015 issue of Nature Cell Biology, their surprising new findings identify two transcription factors -- the glucocorticoid receptor (GR) and the vitamin D receptor (VDR) – that play a key role in insulin resistance, providing some of the first evidence that changes in the cellular nucleus underlie the condition and offering a promising new route for the development of drug therapies for type 2 diabetes.

“We wanted to understand what was initially happening to cause the body to become unresponsive and stop ‘listening’ to insulin,” explains senior author Evan Rosen, MD, PhD, of the Division of Endocrinology, Diabetes and Metabolism at BIDMC and Professor of Medicine at Harvard Medical School. “Insulin resistance has been intensively studied for decades, but most work has focused on rapid events that happen in cells immediately after the hormone is produced. Through epigenomic mapping, we have now identified events that take longer to develop and that involve previously unsuspected biological pathways. Perhaps most importantly, we found that these pathways work completely in the nucleus of the cell by regulating the expression of key target genes, a process that was felt by many to be irrelevant to the development of this widespread condition.”

Previous investigations of insulin resistance have focused almost exclusively on proteins and cellular functions at or near the surface of cells, where insulin binds. However, epidemiological and molecular data have suggested that events leading to insulin resistance might also take place in the nucleus, where the DNA blueprint is stored.

One such piece of evidence comes from an observation surrounding fetal programming, says Rosen. "Fetal programming centers on a person’s exposure in utero,” he explains. “So, for example, whether a fetus has received too few or too many nutrients from the mother can lead to a person becoming obese or diabetic in adulthood, and this in turn can be passed along to the next generation. There is a lot of evidence that insulin resistance can be passed on this way and this type of intergenerational event almost certainly develops in the nucleus.”

Epigenomic modifications refer to changes in the structure of DNA that are distinct from mutations and can be passed from cell to cell as cells divide, and passed from one generation to the next. By mapping these modifications, scientists are able to gain important insights into the cell’s nuclear function.

To better understand how the epigenome is altered in states of insulin resistance, the research team treated fat cells with one of two chemicals, the steroid dexamethasone or the cytokine tumor necrosis factor-alpha (TNF). “By their nature, these agents would be predicted to cause almost opposite effects in cells, and yet we know that both cause insulin resistance,” says Rosen. “This provided us with a unique opportunity to see how each agent was affecting the epigenome of cells. Then by focusing on changes that were shared by the two treatments, we could discern which epigenomic events might be at the core of insulin resistance.” Because the types of epigenomic changes being analyzed occur at locations where transcription factors bind, the team was able use their data to infer which transcription factors might be involved in the development of insulin resistance.

“The glucocorticoid receptor [GR] and the vitamin D [VDR] receptor fit the bill,” says Rosen. A subsequent series of experiments confirmed that the GR and VDR receptors were indeed cooperating and working together to cause insulin resistance.

“Our findings were unanticipated for several reasons,” says Rosen. “First, TNF is a strong inducer of inflammation, while the GR protects against inflammation. Showing that TNF exerts at least some of its actions via the GR is somewhat heretical. Additionally, higher vitamin D levels have been correlated with better insulin sensitivity, so it was surprising to see the VDR associated with insulin resistance. These results call into question some of the basic assumptions surrounding the relationship between vitamin D and metabolic health. Most importantly, these data tell us that we have an awful lot still to learn about the basic mechanisms by which diabetes is triggered, and they reveal new ways in which we can approach drug therapy for this disorder.”

This work was supported by grants from the National Institutes of Health (R01 ES017690, R01085171, DP2OD007447) as well as grants from the American Diabetes Association and the American Heart Association.

Study coauthors include BIDMC investigators Sona Kang and Linus Tsai (co-first authors), Yiming Zhou, Su Xu and Michael J. Griffin; Broad Institute investigators Holly J. Whitton, Charles B. Epstein and Tarjei S. Mikkelsen; Adam Evertts of Princeton University; and Benjamin A. Garcia of the University of Pennsylvania.

Beth Israel Deaconess Medical Center is a patient care, teaching and research affiliate of Harvard Medical School, and currently ranks third in National Institutes of Health funding among independent hospitals nationwide.

BIDMC is in the community with Beth Israel Deaconess Hospital-Milton, Beth Israel Deaconess Hospital-Needham, Beth Israel Deaconess Hospital-Plymouth, Anna Jaques Hospital, Cambridge Health Alliance, Lawrence General Hospital, Signature Healthcare, Beth Israel Deaconess HealthCare, Community Care Alliance, and Atrius Health. BIDMC is also clinically affiliated with the Joslin Diabetes Center and Hebrew Senior Life and is a research partner of Dana-Farber/Harvard Cancer Center and The Jackson Laboratory. BIDMC is the official hospital of the Boston Red Sox. For more information, visit www.bidmc.org 

Bonnie Prescott | newswise

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>