Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Epigenomics Analysis Reveals Surprising New Clues to Insulin Resistance

07.01.2015

Findings offer promising new direction for drug development

In studying the cellular structure and function of insulin, a research team led by investigators at Beth Israel Deaconess Medical Center (BIDMC) has uncovered previously unknown steps in the development of insulin resistance, a hallmark of type 2 diabetes.

Reported in the January 2015 issue of Nature Cell Biology, their surprising new findings identify two transcription factors -- the glucocorticoid receptor (GR) and the vitamin D receptor (VDR) – that play a key role in insulin resistance, providing some of the first evidence that changes in the cellular nucleus underlie the condition and offering a promising new route for the development of drug therapies for type 2 diabetes.

“We wanted to understand what was initially happening to cause the body to become unresponsive and stop ‘listening’ to insulin,” explains senior author Evan Rosen, MD, PhD, of the Division of Endocrinology, Diabetes and Metabolism at BIDMC and Professor of Medicine at Harvard Medical School. “Insulin resistance has been intensively studied for decades, but most work has focused on rapid events that happen in cells immediately after the hormone is produced. Through epigenomic mapping, we have now identified events that take longer to develop and that involve previously unsuspected biological pathways. Perhaps most importantly, we found that these pathways work completely in the nucleus of the cell by regulating the expression of key target genes, a process that was felt by many to be irrelevant to the development of this widespread condition.”

Previous investigations of insulin resistance have focused almost exclusively on proteins and cellular functions at or near the surface of cells, where insulin binds. However, epidemiological and molecular data have suggested that events leading to insulin resistance might also take place in the nucleus, where the DNA blueprint is stored.

One such piece of evidence comes from an observation surrounding fetal programming, says Rosen. "Fetal programming centers on a person’s exposure in utero,” he explains. “So, for example, whether a fetus has received too few or too many nutrients from the mother can lead to a person becoming obese or diabetic in adulthood, and this in turn can be passed along to the next generation. There is a lot of evidence that insulin resistance can be passed on this way and this type of intergenerational event almost certainly develops in the nucleus.”

Epigenomic modifications refer to changes in the structure of DNA that are distinct from mutations and can be passed from cell to cell as cells divide, and passed from one generation to the next. By mapping these modifications, scientists are able to gain important insights into the cell’s nuclear function.

To better understand how the epigenome is altered in states of insulin resistance, the research team treated fat cells with one of two chemicals, the steroid dexamethasone or the cytokine tumor necrosis factor-alpha (TNF). “By their nature, these agents would be predicted to cause almost opposite effects in cells, and yet we know that both cause insulin resistance,” says Rosen. “This provided us with a unique opportunity to see how each agent was affecting the epigenome of cells. Then by focusing on changes that were shared by the two treatments, we could discern which epigenomic events might be at the core of insulin resistance.” Because the types of epigenomic changes being analyzed occur at locations where transcription factors bind, the team was able use their data to infer which transcription factors might be involved in the development of insulin resistance.

“The glucocorticoid receptor [GR] and the vitamin D [VDR] receptor fit the bill,” says Rosen. A subsequent series of experiments confirmed that the GR and VDR receptors were indeed cooperating and working together to cause insulin resistance.

“Our findings were unanticipated for several reasons,” says Rosen. “First, TNF is a strong inducer of inflammation, while the GR protects against inflammation. Showing that TNF exerts at least some of its actions via the GR is somewhat heretical. Additionally, higher vitamin D levels have been correlated with better insulin sensitivity, so it was surprising to see the VDR associated with insulin resistance. These results call into question some of the basic assumptions surrounding the relationship between vitamin D and metabolic health. Most importantly, these data tell us that we have an awful lot still to learn about the basic mechanisms by which diabetes is triggered, and they reveal new ways in which we can approach drug therapy for this disorder.”

This work was supported by grants from the National Institutes of Health (R01 ES017690, R01085171, DP2OD007447) as well as grants from the American Diabetes Association and the American Heart Association.

Study coauthors include BIDMC investigators Sona Kang and Linus Tsai (co-first authors), Yiming Zhou, Su Xu and Michael J. Griffin; Broad Institute investigators Holly J. Whitton, Charles B. Epstein and Tarjei S. Mikkelsen; Adam Evertts of Princeton University; and Benjamin A. Garcia of the University of Pennsylvania.

Beth Israel Deaconess Medical Center is a patient care, teaching and research affiliate of Harvard Medical School, and currently ranks third in National Institutes of Health funding among independent hospitals nationwide.

BIDMC is in the community with Beth Israel Deaconess Hospital-Milton, Beth Israel Deaconess Hospital-Needham, Beth Israel Deaconess Hospital-Plymouth, Anna Jaques Hospital, Cambridge Health Alliance, Lawrence General Hospital, Signature Healthcare, Beth Israel Deaconess HealthCare, Community Care Alliance, and Atrius Health. BIDMC is also clinically affiliated with the Joslin Diabetes Center and Hebrew Senior Life and is a research partner of Dana-Farber/Harvard Cancer Center and The Jackson Laboratory. BIDMC is the official hospital of the Boston Red Sox. For more information, visit www.bidmc.org 

Bonnie Prescott | newswise

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>