Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Epigenetics provides new insights into the pathogenesis of lymphoma

05.10.2016

Cancer cells have a different DNA methylation pattern from that of healthy cells. These patterns can be used to explain tumour-specific deviations in gene expression and to identify biomarkers for the detection of tumours, as well as associated prognosis and treatment planning. This is all possible thanks to epigenetics. Epigenetics looks at special regulation mechanisms, such as DNA methylation and histone modifications, which determine the gene expression pattern of different types of cell and are passed on to daughter cells, without there being any specific changes to the DNA base sequence. Using this technology, it is now also possible to identify the original tumour cells, by comparing them with healthy cells.

In collaboration with scientists from the Austrian Institute of Technology (AIT), the University of Cambridge and the University of Southern California (USC), molecular biologist Melanie Hassler from the working group led by Gerda Egger (Department of Pathology at MedUni Vienna, Division of Experimental Pathology, Head: Lukas Kenner) has analysed the methylation pattern of Anaplastic Large Cell Lymphoma (ALCL), an aggressive non-Hodgkin lymphoma that primarily affects children and young adults. ALCL is a very aggressive form of leukaemia, which usually manifests itself as tumours in the lymph nodes, skin, lungs, liver and soft tissues. 


Epigenetics provides new insights into the pathogenesis of lymphoma

However, in the paper that was recently published in the leading journal "Cell Reports", the researchers were able to use the methylation pattern to show that – contrary to what we previously thought – ALCL resembles early T-cell development in the thymus gland, which is part of the lymphatic system. Moreover, due to epigenetic silencing, these lymphomas lack important T-cell-specific factors for cell development and differentiation. Hassler explains: "Certain drugs that interfere in the methylation programme of cancer cells could be used in future to adjust the methylation pattern of ALCL cells to that of healthy T-cells, thereby arresting tumour growth."

A better understanding of ALCL

Egger: "The results of this study have given us a better understanding of the development of ALCL in children and adolescents, so that in future we will be able to attack cancer cells in a targeted way, using epigenetic therapies. Furthermore, decoding of the methylation pattern of ALCL provides us with a basis for establishing biomarkers in the area of personalised and translational medicine." Gerda Egger heads up the epigenetics working group at the Department of Pathology and is Deputy Director at the Ludwig Boltzmann Institute for Applied Diagnostics.

Full bibliographic information

Cell Reports
„Insights into the pathogenesis of Anaplastic Large Cell Lymphoma through genome-wide DNA methylation profiling.“ Melanie R. Hassler, Walter Pulverer, Ranjani Lakshminarasimhan, Elisa Redl, Julia Hacker, Gavin D. Garland, Olaf Merkel, Ana-Iris Schiefer, Ingrid Simonitsch-Klupp, Lukas Kenner, Daniel J. Weisenberger, Andreas Weinhaeusel, Suzanne D. Turner and Gerda Egger, Cell Reports, 2016, 17:1-13;
http://dx.doi.org/10.1016/j.celrep.2016.09.018

http://www.meduniwien.ac.at

Johannes Angerer | AlphaGalileo

More articles from Life Sciences:

nachricht Clock stars: Astrocytes keep time for brain, behavior
27.03.2017 | Washington University in St. Louis

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Electrical 'switch' in brain's capillary network monitors activity and controls blood flow

27.03.2017 | Health and Medicine

Clock stars: Astrocytes keep time for brain, behavior

27.03.2017 | Life Sciences

Sun's impact on climate change quantified for first time

27.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>