Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Epigenetics provides new insights into the pathogenesis of lymphoma

05.10.2016

Cancer cells have a different DNA methylation pattern from that of healthy cells. These patterns can be used to explain tumour-specific deviations in gene expression and to identify biomarkers for the detection of tumours, as well as associated prognosis and treatment planning. This is all possible thanks to epigenetics. Epigenetics looks at special regulation mechanisms, such as DNA methylation and histone modifications, which determine the gene expression pattern of different types of cell and are passed on to daughter cells, without there being any specific changes to the DNA base sequence. Using this technology, it is now also possible to identify the original tumour cells, by comparing them with healthy cells.

In collaboration with scientists from the Austrian Institute of Technology (AIT), the University of Cambridge and the University of Southern California (USC), molecular biologist Melanie Hassler from the working group led by Gerda Egger (Department of Pathology at MedUni Vienna, Division of Experimental Pathology, Head: Lukas Kenner) has analysed the methylation pattern of Anaplastic Large Cell Lymphoma (ALCL), an aggressive non-Hodgkin lymphoma that primarily affects children and young adults. ALCL is a very aggressive form of leukaemia, which usually manifests itself as tumours in the lymph nodes, skin, lungs, liver and soft tissues. 


Epigenetics provides new insights into the pathogenesis of lymphoma

However, in the paper that was recently published in the leading journal "Cell Reports", the researchers were able to use the methylation pattern to show that – contrary to what we previously thought – ALCL resembles early T-cell development in the thymus gland, which is part of the lymphatic system. Moreover, due to epigenetic silencing, these lymphomas lack important T-cell-specific factors for cell development and differentiation. Hassler explains: "Certain drugs that interfere in the methylation programme of cancer cells could be used in future to adjust the methylation pattern of ALCL cells to that of healthy T-cells, thereby arresting tumour growth."

A better understanding of ALCL

Egger: "The results of this study have given us a better understanding of the development of ALCL in children and adolescents, so that in future we will be able to attack cancer cells in a targeted way, using epigenetic therapies. Furthermore, decoding of the methylation pattern of ALCL provides us with a basis for establishing biomarkers in the area of personalised and translational medicine." Gerda Egger heads up the epigenetics working group at the Department of Pathology and is Deputy Director at the Ludwig Boltzmann Institute for Applied Diagnostics.

Full bibliographic information

Cell Reports
„Insights into the pathogenesis of Anaplastic Large Cell Lymphoma through genome-wide DNA methylation profiling.“ Melanie R. Hassler, Walter Pulverer, Ranjani Lakshminarasimhan, Elisa Redl, Julia Hacker, Gavin D. Garland, Olaf Merkel, Ana-Iris Schiefer, Ingrid Simonitsch-Klupp, Lukas Kenner, Daniel J. Weisenberger, Andreas Weinhaeusel, Suzanne D. Turner and Gerda Egger, Cell Reports, 2016, 17:1-13;
http://dx.doi.org/10.1016/j.celrep.2016.09.018

http://www.meduniwien.ac.at

Johannes Angerer | AlphaGalileo

More articles from Life Sciences:

nachricht The body's street sweepers
18.12.2017 | Ludwig-Maximilians-Universität München

nachricht Life on the edge prepares plants for climate change
18.12.2017 | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Error-free into the Quantum Computer Age

A study carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors.

In order to reach their full potential, today’s quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means...

Im Focus: Search for planets with Carmenes successful

German and Spanish researchers plan, build and use modern spectrograph

Since 2016, German and Spanish researchers, among them scientists from the University of Göttingen, have been hunting for exoplanets with the “Carmenes”...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

The body's street sweepers

18.12.2017 | Life Sciences

Fast flowing heat in layered material heterostructures

18.12.2017 | Materials Sciences

Life on the edge prepares plants for climate change

18.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>