Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Epigenetics alters genes in rheumatoid arthritis

04.07.2012
It's not just our DNA that makes us susceptible to disease and influences its impact and outcome. Scientists are beginning to realize more and more that important changes in genes that are unrelated to changes in the DNA sequence itself – a field of study known as epigenetics – are equally influential.

A research team at the University of California, San Diego – led by Gary S. Firestein, professor in the Division of Rheumatology, Allergy and Immunology at UC San Diego School of Medicine – investigated a mechanism usually implicated in cancer and in fetal development, called DNA methylation, in the progression of rheumatoid arthritis (RA). They found that epigenetic changes due to methylation play a key role in altering genes that could potentially contribute to inflammation and joint damage. Their study is currently published in the online edition of the Annals of the Rheumatic Diseases.


In this artist's rendering, a DNA molecule is methylated on both strands at the center cytosine. DNA methylation plays an important role in epigenetic gene regulation, and is involved in both normal development and in cancer. Credit: UC San Diego School of Medicine

"Genomics has rapidly advanced our understanding of susceptibility and severity of rheumatoid arthritis," said Firestein. "While many genetic associations have been described in this disease, we also know that if one identical twin develops RA that the other twin only has a 12 to 15 percent chance of also getting the disease. This suggests that other factors are at play – epigenetic influences."

DNA methylation is one example of epigenetic change, in which a strand of DNA is modified after it is duplicated by adding a methyl to any cytosine molecule (C) – one of the 4 main bases of DNA. This is one of the methods used to regulate gene expression, and is often abnormal in cancers and plays a role in organ development.

While DNA methylation of individual genes has been explored in autoimmune diseases, this study represents a genome-wide evaluation of the process in fibroblast-like synoviocytes (FLS), isolated from the site of the disease in RA. FLS are cells that interact with the immune cells in RA, an inflammatory disease in the joints that damages cartilage, bone and soft tissues of the joint.

In this study, scientists isolated and evaluated genomic DNA from 28 cell lines. They looked at DNA methylation patterns in RA FLS and compared them with FLS derived from normal individuals or patients with non-inflammatory joint disease. The data showed that the FLS in RA display a DNA methylome signature that distinguishes them from osteoarthritis and normal FLS. These FLS possess differentially methylated (DM) genes that are critical to cell trafficking, inflammation and cell–extracellular matrix interactions.

"We found that hypomethylation of individual genes was associated with increased gene expression and occurred in multiple pathways critical to inflammatory responses," said Firestein, adding that this led to their conclusion: Differentially methylated genes can alter FLS gene expression and contribute to the pathogenesis of RA.

Additional contributors include Kazuhisa Nakano and David L. Boyle, UCSD Department of Medicine; and John W. Whitaker and Wei Wang, UCSD Department of Chemistry and Biochemistry.

This project was supported by grant number UL1RR031980 from the National Institutes of Health's National Center for Advancing Translational Science.

NexDx, Inc. licensed the technology from UC San Diego and provided informatics support for this study. Gary S. Firestein and Wei Wang are on the Scientific Advisory Board of NexDx, Inc.

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht New procedure enables cultivation of human brain sections in the petri dish
19.10.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht The “everywhere” protein: honour for the unravellor of its biology
19.10.2017 | Boehringer Ingelheim Stiftung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>