Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Epigenetic regulation of a genetic gatekeeper, Elf5, provides new insights into cell fate at a developmental crossroad

04.11.2008
Scientists at the Babraham Institute and the Centre for Trophoblast Research in Cambridge have established that a gene, known as Elf5, plays a critical role in early development using elegant epigenetic mechanisms to keep placental and embryonic cells apart.

The findings, reported in November’s Nature Cell Biology, provide new insights into the developmental decisions that are made after fertilisation, to ensure that cells either become committed to forming the placenta or the embryo.

Epigenetic control mechanisms are at the heart of this, orchestrating the formation of many different tissues and organs from a fertilised egg, and ensuring that once certain developmental decisions are made, cell fate is normally irreversible. The discovery of the ability to reverse cell fate through epigenetic regulation of Elf5 offers new insights into regenerative medicine and stem cell therapy.

Cell differentiation is usually a one-way process, starting from a precursor cell that initially has the potential to follow various differentiation pathways, getting increasingly specialised in function until its ‘cell fate’ is realised and it becomes a particular cell type, such as a nerve or muscle cell, a process called terminal differentiation.

The fertilised embryo possesses the greatest plasticity; it is totipotent and can differentiate into all cell types of the foetus as well as the placenta. One of the first definitive divergences in cell differentiation pathways is the point where cells that will form the placenta are set aside from those that will form the foetus. Once this decision has been made, it was thought that there is no turning back or crossover between future placental and embryonic cells. How this strict lineage separation is achieved, however, has remained elusive.

Since all cells in an individual contain the same genetic material, but behave differently depending on which organs eventually comprise, an elaborate mechanism has evolved to fine tune our genes and their expression in different places at different times, leading to the amazing complexity we see in humans despite the relatively small number of unique genes. This process involves specific chemical modifications to the DNA, such as methylation, which modify the structure of the DNA but not its sequence, and regulate gene function. A failure of these epigenetic control mechanisms is linked to a number of human genetic diseases, psychiatric disorders and ageing as well as contributing to some pregnancy complications such as pre-eclampsia. Babraham scientists recently reported that these epigenetic mechanisms can be traced to the divergence of placental mammals and marsupials from the curious egg-laying monotremes, notably the platypus, 150 million years ago.

These ‘epigenetic marks’ are able to impose, and lock in, future cell fate in either placental cell populations or those that embark upon embryonic development. This paper reports on the identification of such an epigenetic restriction of cell lineage fate, directed on a particular gene to keep placental and embryonic cells apart. Elf5 has been identified as the key gene determining cell fate at the gateway of placental versus embryo development.

“The DNA sequence of the gene Elf5 is modified by a methylation mark in future populations of embryonic cells ensuring that the gene is kept in a stable ‘off’ state. In contrast the sequence is not modified in placental cells; the gene is ‘on’ and reinforces placental cell fate. We demonstrated that by removing the methylation mark in embryonic cells, we could convert these normally committed embryonic cells into cells with placental characteristics”, said Dr Myriam Hemberger.

"This is really the first molecular example of an epigenetic restriction of lineage fate. Elf5 really sits at the junction of lineage divergence between the embryonic and trophoblast lineages in early development."

This work has provided new insights into the apparent irreversibility of cell fate and how cell fate is normally locked in to achieve stable differentiation. This is of particular importance for strategies in regenerative medicine that aim to generate a specific cell type from multi- or pluripotent stem cells and to prevent its de-differentiation, a process that bears the risk of tumour formation. Ultimately, these results may pave the way for differentiated cells to be specifically instructed to generate other essential cell types for therapeutic use. This knowledge will open up new possibilities into research of pregnancy complications that have a specific placental origin.

This work was supported by an MRC Career Development fellowship to Dr Hemberger, a Croucher Foundation Fellowship to Dr Ng, by BBSRC, MRC, EU NoE The Epigenome, CellCentric, and DIUS.

Claire Cockcroft | alfa
Further information:
http://www.babraham.ac.uk
http://www.trophoblast.cam.ac.uk/

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>