Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How enzymes regulate energy metabolism. New insights into the signalling network of cells

13.07.2011
Mitochondria are known as the "cell‘s power plant" fulfilling key functions for the metabolic processes in cells.

An international research team led by Professor Clemens Steegborn, University of Bayreuth, currently detected a system of biochemical signals and processes interacting collectively in order to control the energy metabolic processes within cells.

The scientists report on their results in the "Journal of Biological Chemistry". These will advance the basic research in the field of signal controlled processes within cells. In addition, interesting perspectives for the development of therapeutic drugs will be established.

To prevent cellular respiration from a standstill: the messenger cAMP

A key role for the energy metabolic processes within cells is assigned to cyclical Adenosine Monophosphate, in short: "cAMP", which is acting as messenger transmitting signals that are essential for a functioning metabolism. It activates proteins within mitochondria which participate in cellular respiration thus controlling energy metabolism. The molecules of cAMP are located inside the mitochondria, the so-called matrix, which is enclosed by an inner and an outer membrane. In case of an increased quantity of cAMP molecules the energy metabolism will be stimulated. Conversely, a reduction in the cAMP molecules weakens the energy metabolism.

Controlled by enzymes: cAMP as a switch for energy metabolism

This is the point where the research results published by Steegborn in cooperation with his colleagues from Cornell University in New York and Ruhr-University in Bochum get traction. The scientists discovered how the reduction of cAMP contained within the mitochondria occurs. In their research they decrypted an important mechanism for regulating the messenger quantity:

• Increases of cAMP are controlled by the enzyme adenylate cyclase (sAC). This enzyme produces cAMP molecules from the cellular energy reservoir adenosyne triphosphate (ATP). In order for the enzyme to assume this catalytic function, it itself has to be activated, e.g. by bicarbonate.

• The opposite process, e.g. the reduction of cAMP levels, is initiated by another enzyme. The protein involved here originates from the family of phosphodiesterases (PDE); to be precise, an isoform of PDE2A. This enzyme must also be activated so that it may reduce the amount of cAMP contained in the mitochondria. This process is performed by molecules which aggregate along an area at the end of the protein, the N-terminus of the PDE2A molecules.

In this manner, the messenger cAMP acts as an enzyme controlled switch which strengthens or weakens the energy metabolism. The "position" of the switch is determined by which of the two enzymes dominates: Adenylate cyclase (sAC) increases the amount of cAMP, phosphodiesterases (PDE2A) would reduce it.

From mice to men: Identical control mechanism in mammals

The scientists were particularly intrigued by the phosphodiesterases (PDE2A) present in the mitochondria. They did not only identify this enzyme in mitochondria of various cell tissues in mice and rats, but also in mitochondria of cultured human cells. "Based on our laboratory results, we can assume that this mechanism for controling energy metabolism basically operates in this fashion in all mammals", Steegborn declares. He and his colleagues were also successful in demonstrating how the PDE2A is transported into the mitochondria. The N-terminus is responsible for allowing this particular form of phophodiesterases to pass through the protective double membrane of the mitochondria.

Which molecules within the mitochondria bind to the regulatory region of the PDE2A thus activating the enzyme, could not be determined yet. At present, Steegborn and his staff are testing the assumption that these molecules are cyclical Guanosine Monophosphate (cGMP). This is also an intracellular messenger, however, one which up to now could only be identified outside of the mitochondria, within the cytosol.

New perspectives to fight diseases, e.g. metabolic conditions

Discovering that phosphodiesterases weaken the activating impact of cAMP on cellular respiration provides new options for research into therapeutic drugs. Even today pharmaceuticals, which act as inhibitors on phosphodiesterases, are in use for other purposes. "Therefore, our findings provide attractive approaches for developing substances which counteract specifically the reduction of cAMP", Steegborn declares. Consequently, such active ingredients could increase energy metabolism and contribute to successfully fighting metabolic disorders or, in addition, neuronal diseases.

Publication:

Rebeca Acin-Perez, Michael Russwurm, Kathrin Günnewig, Melanie Gertz, Georg Zoidl, Lavoisier Ramos, Jochen Buck, Lonny R. Levin, Joachim Rassow, Giovanni Manfredi, Clemens Steegborn,
A phosphodiesterase 2A isoform localized to mitochondria regulates respiration,
in: Journal of Biological Chemistry,
First Published on July 1, 2011,
DOI-Bookmark: 10.1074/jbc.M111.266379
Contact for further information:
Department of Biochemistry
University of Bayreuth
D-95440 Bayreuth
Telefon: +49 (0) 921 / 55-2421 und 55-2420
E-Mail: clemens.steegborn@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Further information:
http://www.uni-bayreuth.de

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>