Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How enzymes regulate energy metabolism. New insights into the signalling network of cells

13.07.2011
Mitochondria are known as the "cell‘s power plant" fulfilling key functions for the metabolic processes in cells.

An international research team led by Professor Clemens Steegborn, University of Bayreuth, currently detected a system of biochemical signals and processes interacting collectively in order to control the energy metabolic processes within cells.

The scientists report on their results in the "Journal of Biological Chemistry". These will advance the basic research in the field of signal controlled processes within cells. In addition, interesting perspectives for the development of therapeutic drugs will be established.

To prevent cellular respiration from a standstill: the messenger cAMP

A key role for the energy metabolic processes within cells is assigned to cyclical Adenosine Monophosphate, in short: "cAMP", which is acting as messenger transmitting signals that are essential for a functioning metabolism. It activates proteins within mitochondria which participate in cellular respiration thus controlling energy metabolism. The molecules of cAMP are located inside the mitochondria, the so-called matrix, which is enclosed by an inner and an outer membrane. In case of an increased quantity of cAMP molecules the energy metabolism will be stimulated. Conversely, a reduction in the cAMP molecules weakens the energy metabolism.

Controlled by enzymes: cAMP as a switch for energy metabolism

This is the point where the research results published by Steegborn in cooperation with his colleagues from Cornell University in New York and Ruhr-University in Bochum get traction. The scientists discovered how the reduction of cAMP contained within the mitochondria occurs. In their research they decrypted an important mechanism for regulating the messenger quantity:

• Increases of cAMP are controlled by the enzyme adenylate cyclase (sAC). This enzyme produces cAMP molecules from the cellular energy reservoir adenosyne triphosphate (ATP). In order for the enzyme to assume this catalytic function, it itself has to be activated, e.g. by bicarbonate.

• The opposite process, e.g. the reduction of cAMP levels, is initiated by another enzyme. The protein involved here originates from the family of phosphodiesterases (PDE); to be precise, an isoform of PDE2A. This enzyme must also be activated so that it may reduce the amount of cAMP contained in the mitochondria. This process is performed by molecules which aggregate along an area at the end of the protein, the N-terminus of the PDE2A molecules.

In this manner, the messenger cAMP acts as an enzyme controlled switch which strengthens or weakens the energy metabolism. The "position" of the switch is determined by which of the two enzymes dominates: Adenylate cyclase (sAC) increases the amount of cAMP, phosphodiesterases (PDE2A) would reduce it.

From mice to men: Identical control mechanism in mammals

The scientists were particularly intrigued by the phosphodiesterases (PDE2A) present in the mitochondria. They did not only identify this enzyme in mitochondria of various cell tissues in mice and rats, but also in mitochondria of cultured human cells. "Based on our laboratory results, we can assume that this mechanism for controling energy metabolism basically operates in this fashion in all mammals", Steegborn declares. He and his colleagues were also successful in demonstrating how the PDE2A is transported into the mitochondria. The N-terminus is responsible for allowing this particular form of phophodiesterases to pass through the protective double membrane of the mitochondria.

Which molecules within the mitochondria bind to the regulatory region of the PDE2A thus activating the enzyme, could not be determined yet. At present, Steegborn and his staff are testing the assumption that these molecules are cyclical Guanosine Monophosphate (cGMP). This is also an intracellular messenger, however, one which up to now could only be identified outside of the mitochondria, within the cytosol.

New perspectives to fight diseases, e.g. metabolic conditions

Discovering that phosphodiesterases weaken the activating impact of cAMP on cellular respiration provides new options for research into therapeutic drugs. Even today pharmaceuticals, which act as inhibitors on phosphodiesterases, are in use for other purposes. "Therefore, our findings provide attractive approaches for developing substances which counteract specifically the reduction of cAMP", Steegborn declares. Consequently, such active ingredients could increase energy metabolism and contribute to successfully fighting metabolic disorders or, in addition, neuronal diseases.

Publication:

Rebeca Acin-Perez, Michael Russwurm, Kathrin Günnewig, Melanie Gertz, Georg Zoidl, Lavoisier Ramos, Jochen Buck, Lonny R. Levin, Joachim Rassow, Giovanni Manfredi, Clemens Steegborn,
A phosphodiesterase 2A isoform localized to mitochondria regulates respiration,
in: Journal of Biological Chemistry,
First Published on July 1, 2011,
DOI-Bookmark: 10.1074/jbc.M111.266379
Contact for further information:
Department of Biochemistry
University of Bayreuth
D-95440 Bayreuth
Telefon: +49 (0) 921 / 55-2421 und 55-2420
E-Mail: clemens.steegborn@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Further information:
http://www.uni-bayreuth.de

More articles from Life Sciences:

nachricht Bioengineered soft microfibers improve T-cell production
18.01.2018 | Columbia University School of Engineering and Applied Science

nachricht New application for acoustics helps estimate marine life populations
16.01.2018 | University of California - San Diego

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>