Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enzymes that Provide Protection Against Nerve Gas

24.01.2011
Weizmann Institute Scientists used Accelerated Evolution to Develop: Enzymes that Provide Protection Against Nerve Gas

Protection against nerve gas attack is a significant component of the defense system of many countries around the world. Nerve gases are used by armies and terrorist organizations, and constitute a threat to both the military and civilian populations, but existing drug solutions against them have limited efficiency.

A multidisciplinary team of scientists at the Weizmann Institute of Science succeeded in developing an enzyme that breaks down such organophosphorus nerve agents efficiently before damage to nerves and muscles is caused. Their results have recently been published in the journal Nature Chemical Biology. Recent experiments performed in a U.S. military laboratory (USAMRICD) have shown that injecting a relatively small amount of this enzyme into animals provides protection against certain types of nerve agents, for which current treatments show limited efficacy.

Nerve agents disrupt the chemical messages sent between nerve and muscle cells, causing loss of muscle control, and ultimately leading to death by suffocation. Nerve agents interfere with the activity of acetylcholinesterase, the enzyme responsible for the breakdown of the chemical messenger – acetylcholine. As a result, acetylcholine continues to exert its effect, resulting in constant muscle contraction throughout the body.

Several drugs exist that are used to treat cases of nerve agent poisoning. Although these drugs are somewhat effective when exposed to small doses of the nerve agent, they do not provide protection against high-dose exposure; they are not effective against all types of nerve agents; or they cause serious side effects. Neither are they able to prevent nor repair cerebral and motor nerve damage caused by the nerve agent.

An ideal solution to the problem is to use enzymes – proteins that speed up chemical reactions – to capture and break down the nerve agent before it gets the chance to bind to the acetylcholinesterase, thereby preventing damage. The main obstacle facing the realization of this idea, however, is that nerve agents are man-made materials and therefore, evolution has not developed natural enzymes that are able to carry out this task.

Scientists worldwide have previously succeeded in identifying enzymes that are able to break down similar materials, but these enzymes were characterized by low efficiency. Large amounts of the enzyme were therefore required in order to break down the nerve agent, rendering their use impractical.

This is where Prof. Dan Tawfik of the Weizmann Institute’s Biological Chemistry Department enters the picture. Tawfik's group developed a special method to artificially induce “natural selection” of enzymes in a test tube, enabling them to engineer “tailor-made” enzymes.

The method is based on introducing many mutations to an enzyme, and scanning the variety of mutated versions that were created in order to identify those that exhibit improved efficiency. These improved enzymes then repeatedly undergo further rounds of mutations and selection for higher efficiency. In previous studies, Tawfik showed that this method can improve the efficiency of enzymes by factors of hundreds and even thousands.

For the current task, Tawfik selected an enzyme that has been extensively studied in his laboratory, known as PON1. The main role of this enzyme, found naturally in the human body, is to break down the products of oxidized fats that accumulate on blood vessel walls, thus preventing atherosclerosis. But PON1 seems to be a bit of a “moonlighter” as it has also been found to degrade compounds belonging to the family of nerve agents.

However, because this activity has not fully evolved and developed through natural selection, its efficiency in carrying out the task remains very low. But by using the directed evolution method, scientists hope that they will be able to evolve this random “moonlighting” activity into PON1’s main “day job,” which would be carried out more quickly and efficiently than before.

In the first phase, Tawfik and his team, including research fellow Dr. Moshe Goldsmith and postdoctoral student Dr. Rinkoo Devi Gupta, induced a number of mutations in PON1 – some random and others directed at key sites on the enzyme. To identify the most effective PON1 mutants, the scientists joined forces with Yacov Ashani of the Structural Biology Department.

The method that the scientists developed closely mimics what happens in the body upon exposure to nerve agents: They put the acetylcholinesterase in a test tube together with a specific mutant PON1 enzyme that they wanted to test, and added a small amount of nerve agent to it. In cases where the acetylcholinesterase continued to function properly, it could be concluded that PON1 rapidly degraded the nerve agent before it was able to cause damage to the acetylcholinesterase.

After several rounds of scanning, the scientists succeeded in indentifying active mutant enzymes, which are able to break down the nerve agents soman and cyclosarin effectively before any damage is caused to the acetylcholinesterase. These mutant enzymes have been structurally analyzed by a team of scientists from the Structural Biology Department, which included Profs. Joel Sussman and Israel Silman, and research student Moshe Ben-David. Further experiments have shown that when these enzymes were given as a preventative treatment before exposure, they afforded animals near-complete protection against these two types of nerve agents, even when exposed to relatively high levels.

The scientists plan to further expand the scope and develop preventive treatment that provides protection against all types of existing nerve agents. They are also trying to develop enzymes with high enough efficiency to be able to very rapidly break down the nerve agent so they could be used to prevent the lethal effects of nerve agents by injection immediately after exposure.

Prof. Dan Tawfik’s research is supported by the Helen and Martin Kimmel Award for Innovative Investigation; the Willner Family Leadership Institute for the Weizmann Institute of Science; the Sassoon and Marjorie Peress Philanthropic Fund; Miel de Botton Aynsley, UK; Samy Cohn, Brazil; Mario Fleck, Brazil; Yossie Hollander, Israel; and Roberto and Renata Ruhman, Brazil.

Prof. Tawfik is the incumbent of the Nella and Leon Benoziyo Professorial Chair.

The Weizmann Institute of Science in Rehovot, Israel, is one of the world's top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to 2,700 scientists, students, technicians and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials and developing new strategies for protecting the environment.

Weizmann Institute news releases are posted on the World Wide Web at http://wis-wander.weizmann.ac.il, and are also available at http://www.eurekalert.org.

Yivsam Azgad | idw
Further information:
http://wis-wander.weizmann.ac.il

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>