Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Re-Using Enzymes Key to South Dakota State University Research

05.05.2010
A South Dakota State University scientist is exploring ways to re-use enzymes in processes such as making cellulosic ethanol.

The research could lead to big financial savings for industry.

“Enzymes are usually very expensive items in chemistry or biochemistry,” said professor Basil Dalaly in South Dakota State University’s Department of Nutrition, Food Science and Hospitality. “One of the big obstacles in using enzymes in converting cellulose, or biomass, to ethanol is the high cost of enzymes. We are trying immobilize the enzyme by attaching it to beads.

“Afterwards, the enzyme could be used for more than one time — two, three, four, five times because the beads will keep the attached enzyme rather than allowing it to float away along with the processed products.”

Working with enzyme company Novozymes, Dalaly and his graduate student, Pavani Mandali, have evaluated several chemical methods to attach enzymes to beads. They then evaluated the enzyme activity, how well the enzymes attached to the beads and other technical variables.

“From our results so far, I can say we are successful in using the enzymes for five cycles, but with decreasing activity from 100 percent to 40 percent. We still retain 40 percent of the original activity of the enzyme,” Dalaly said.

He added that would be a huge financial advantage in industrial processes that rely on enzymes.

“Using the same enzyme for five times means you need not use a fresh batch of enzymes every time — you can use them over and over,” Dalaly said.

Mandali, who is working toward her Ph.D. in biological sciences, said the SDSU research shows enzymes attached to the beads have 95 percent of their original activity when used a second time; 75 percent of their original activity when used for a third cycle; 50 percent of their activity when used a fourth time; and about 35 to 40 percent of their original activity when used for a fifth processing cycle.

The SDSU study is part of a many-pronged project to develop more efficient methods to produce ethanol from cellulosic biomass, thought to be the source of the next generation of ethanol. Dalaly’s work uses biomass pretreated by engineers in SDSU’s Department of Agricultural and Biosystems Engineering.

“We are trying now to use biomass, corn stover and DDGS to convert to ethanol,” Dalaly said.

His work so far shows the re-used enzymes work better on some biomass materials than others.

“In the near future we will use these immobilized enzymes in a small bioreactor on different kinds of biomass, not only corn stover and DDGS, but also big bluestem, switchgrass and prairie cordgrass,” Dalaly said.

Dalaly’s work also looks at questions such as the time for all of the biomass to be hydrolyzed, or broken down. The project also involves analyzing the hydrolyzed biomass to determine what monosaccharides, or simple sugars, are in the hydrolysate.

Dalaly said as the SDSU work continues, he and his student will address the problem of how to gather or recover the beads once a processing cycle is over.

In addition to the enzymes provided by Novozymes, the federal Department of Energy and the South Dakota Corn Utilization Council help support Dalaly’s research though grants. The North Central Sun Grant Center at SDSU also funded some of Dalaly’s early work looking at enzymes in pretreatment of biomass feedstocks.

About South Dakota State University
Founded in 1881, South Dakota State University is the state’s Morrill Act land-grant institution as well as its largest, most comprehensive school of higher education. SDSU confers degrees from seven different colleges representing more than 200 majors, minors and options. The institution also offers 23 master’s degree programs and 12 Ph.D. programs.

The work of the university is carried out on a residential campus in Brookings, at sites in Sioux Falls, Pierre and Rapid City, and through Cooperative Extension offices and Agricultural Experiment Station research sites across the state.

Basil Dalaly | Newswise Science News
Further information:
http://www.sdstate.edu

Further reports about: Agricultural Research DDGS Dakota Novozymes SDSU enzymes

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>