Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Re-Using Enzymes Key to South Dakota State University Research

05.05.2010
A South Dakota State University scientist is exploring ways to re-use enzymes in processes such as making cellulosic ethanol.

The research could lead to big financial savings for industry.

“Enzymes are usually very expensive items in chemistry or biochemistry,” said professor Basil Dalaly in South Dakota State University’s Department of Nutrition, Food Science and Hospitality. “One of the big obstacles in using enzymes in converting cellulose, or biomass, to ethanol is the high cost of enzymes. We are trying immobilize the enzyme by attaching it to beads.

“Afterwards, the enzyme could be used for more than one time — two, three, four, five times because the beads will keep the attached enzyme rather than allowing it to float away along with the processed products.”

Working with enzyme company Novozymes, Dalaly and his graduate student, Pavani Mandali, have evaluated several chemical methods to attach enzymes to beads. They then evaluated the enzyme activity, how well the enzymes attached to the beads and other technical variables.

“From our results so far, I can say we are successful in using the enzymes for five cycles, but with decreasing activity from 100 percent to 40 percent. We still retain 40 percent of the original activity of the enzyme,” Dalaly said.

He added that would be a huge financial advantage in industrial processes that rely on enzymes.

“Using the same enzyme for five times means you need not use a fresh batch of enzymes every time — you can use them over and over,” Dalaly said.

Mandali, who is working toward her Ph.D. in biological sciences, said the SDSU research shows enzymes attached to the beads have 95 percent of their original activity when used a second time; 75 percent of their original activity when used for a third cycle; 50 percent of their activity when used a fourth time; and about 35 to 40 percent of their original activity when used for a fifth processing cycle.

The SDSU study is part of a many-pronged project to develop more efficient methods to produce ethanol from cellulosic biomass, thought to be the source of the next generation of ethanol. Dalaly’s work uses biomass pretreated by engineers in SDSU’s Department of Agricultural and Biosystems Engineering.

“We are trying now to use biomass, corn stover and DDGS to convert to ethanol,” Dalaly said.

His work so far shows the re-used enzymes work better on some biomass materials than others.

“In the near future we will use these immobilized enzymes in a small bioreactor on different kinds of biomass, not only corn stover and DDGS, but also big bluestem, switchgrass and prairie cordgrass,” Dalaly said.

Dalaly’s work also looks at questions such as the time for all of the biomass to be hydrolyzed, or broken down. The project also involves analyzing the hydrolyzed biomass to determine what monosaccharides, or simple sugars, are in the hydrolysate.

Dalaly said as the SDSU work continues, he and his student will address the problem of how to gather or recover the beads once a processing cycle is over.

In addition to the enzymes provided by Novozymes, the federal Department of Energy and the South Dakota Corn Utilization Council help support Dalaly’s research though grants. The North Central Sun Grant Center at SDSU also funded some of Dalaly’s early work looking at enzymes in pretreatment of biomass feedstocks.

About South Dakota State University
Founded in 1881, South Dakota State University is the state’s Morrill Act land-grant institution as well as its largest, most comprehensive school of higher education. SDSU confers degrees from seven different colleges representing more than 200 majors, minors and options. The institution also offers 23 master’s degree programs and 12 Ph.D. programs.

The work of the university is carried out on a residential campus in Brookings, at sites in Sioux Falls, Pierre and Rapid City, and through Cooperative Extension offices and Agricultural Experiment Station research sites across the state.

Basil Dalaly | Newswise Science News
Further information:
http://www.sdstate.edu

Further reports about: Agricultural Research DDGS Dakota Novozymes SDSU enzymes

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>