Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Re-Using Enzymes Key to South Dakota State University Research

05.05.2010
A South Dakota State University scientist is exploring ways to re-use enzymes in processes such as making cellulosic ethanol.

The research could lead to big financial savings for industry.

“Enzymes are usually very expensive items in chemistry or biochemistry,” said professor Basil Dalaly in South Dakota State University’s Department of Nutrition, Food Science and Hospitality. “One of the big obstacles in using enzymes in converting cellulose, or biomass, to ethanol is the high cost of enzymes. We are trying immobilize the enzyme by attaching it to beads.

“Afterwards, the enzyme could be used for more than one time — two, three, four, five times because the beads will keep the attached enzyme rather than allowing it to float away along with the processed products.”

Working with enzyme company Novozymes, Dalaly and his graduate student, Pavani Mandali, have evaluated several chemical methods to attach enzymes to beads. They then evaluated the enzyme activity, how well the enzymes attached to the beads and other technical variables.

“From our results so far, I can say we are successful in using the enzymes for five cycles, but with decreasing activity from 100 percent to 40 percent. We still retain 40 percent of the original activity of the enzyme,” Dalaly said.

He added that would be a huge financial advantage in industrial processes that rely on enzymes.

“Using the same enzyme for five times means you need not use a fresh batch of enzymes every time — you can use them over and over,” Dalaly said.

Mandali, who is working toward her Ph.D. in biological sciences, said the SDSU research shows enzymes attached to the beads have 95 percent of their original activity when used a second time; 75 percent of their original activity when used for a third cycle; 50 percent of their activity when used a fourth time; and about 35 to 40 percent of their original activity when used for a fifth processing cycle.

The SDSU study is part of a many-pronged project to develop more efficient methods to produce ethanol from cellulosic biomass, thought to be the source of the next generation of ethanol. Dalaly’s work uses biomass pretreated by engineers in SDSU’s Department of Agricultural and Biosystems Engineering.

“We are trying now to use biomass, corn stover and DDGS to convert to ethanol,” Dalaly said.

His work so far shows the re-used enzymes work better on some biomass materials than others.

“In the near future we will use these immobilized enzymes in a small bioreactor on different kinds of biomass, not only corn stover and DDGS, but also big bluestem, switchgrass and prairie cordgrass,” Dalaly said.

Dalaly’s work also looks at questions such as the time for all of the biomass to be hydrolyzed, or broken down. The project also involves analyzing the hydrolyzed biomass to determine what monosaccharides, or simple sugars, are in the hydrolysate.

Dalaly said as the SDSU work continues, he and his student will address the problem of how to gather or recover the beads once a processing cycle is over.

In addition to the enzymes provided by Novozymes, the federal Department of Energy and the South Dakota Corn Utilization Council help support Dalaly’s research though grants. The North Central Sun Grant Center at SDSU also funded some of Dalaly’s early work looking at enzymes in pretreatment of biomass feedstocks.

About South Dakota State University
Founded in 1881, South Dakota State University is the state’s Morrill Act land-grant institution as well as its largest, most comprehensive school of higher education. SDSU confers degrees from seven different colleges representing more than 200 majors, minors and options. The institution also offers 23 master’s degree programs and 12 Ph.D. programs.

The work of the university is carried out on a residential campus in Brookings, at sites in Sioux Falls, Pierre and Rapid City, and through Cooperative Extension offices and Agricultural Experiment Station research sites across the state.

Basil Dalaly | Newswise Science News
Further information:
http://www.sdstate.edu

Further reports about: Agricultural Research DDGS Dakota Novozymes SDSU enzymes

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>