Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enzyme weakens the heart

19.02.2009
Genetic suppression protects from chronic cardiac insufficiency in animal tests / Heidelberg cardiologists publish findings in “Proceedings of the National Academy of Sciences”

An enzyme makes the mouse heart prone to chronic cardiac insufficiency – if it is suppressed, the heart remains strong despite increased stress.

Cardiologists at the Internal Medicine Clinic at Heidelberg University Hospital in cooperation with scientists at the University of Texas Southwestern Medical Center at Dallas and Göttingen University Hospital have now explained this key mechanism in a mouse model and thus discovered a promising approach for the systematic prevention of chronic cardiac insufficiency.

The study has now been published online before print in the prestigious journal “Proceedings of the National Academy of Sciences”.

Long-term high pressure and stenoses of the valves or aorta make the heart work harder. When it compensates by excessive muscle growth (cardiac hypertrophy), the pump function is affected – rhythm disorders or heart failure can be the result. Other risk factors are overweight and age – more than 40 percent of people over age 70 suffer from cardiac muscle hypertrophy.

Despite progress in medication, around 95,000 people in Germany die annually from the consequences of chronic cardiac insufficiency. “It is essential to find the molecules that are key to the development of cardiac insufficiency in order to develop new, more efficient treatment“ states Dr. Johannes Backs, head of a research group in the Department of Cardiology, Angiology, and Pneumonology (Director Prof. Dr. med. Hugo A. Katus) at Heidelberg University Hospital.

Enzyme activates stress response and hypertrophy of the heart

A key molecule for cardiac hypertrophy brought on by stress is the naturally occurring enzyme CaMKII delta (Calcium/Calmodulin-dependent kinase II delta). Dr. Backs’ international research team proved this in genetically modified mice that could no longer produce this enzyme by surgically obstructing the main aorta to put the heart under greater stress and thus simulate permanent high blood pressure or valve stenosis in humans. The anticipated enlargement of the heart was very slight – the animals were protected.

“With these mice, we succeeded for the first time in specifically suppressing the CaMKII delta enzyme and clarifying its function in detail,” said Dr. Backs. CaMKII delta has a direct effect on the cells’ stress response. If it is missing, certain information in cell DNA is not accessed that is normally activated by stress, leading to hypertrophy of the heart. “There was still some slight enlargement of the heart, but presumably not enough to cause cardiac insufficiency,” said Dr. Backs. Under normal conditions, the genetically modified mice are inconspicuous – their hearts function and react normally.

The function of CaMKII delta as an intermediate of the heart’s stress response is a possible approach for effective therapy – the Heidelberg researchers anticipate that agents that block only this function of the enzyme would prevent the heart muscle from reacting to overload. Other functions of CaMKII delta should not be affected in order to avoid harmful side effects.

Contact person:

Dr. Johannes Backs
Head of Emmy Noether Research Group
Department of Cardiology at Heidelberg University Hospital
Tel.: +49 (0)6221 / 56 37 714
E-mail: johannes.backs(at)med.uni-heidelberg.de
References:
Backs J, Backs T, Neef S, Kreusser MM, Lehmann LH, Patrick DM, Grueter CE, Qi X, Richardson JA, Hill JA, Katus HA, Bassel-Duby R, Maier LS, Olson EN. The delta isoform of CaM kinase II is required for pathological cardiac hypertrophy and remodeling after pressure overload. Proc Natl Acad Sci USA. 2009 Jan 28. [Epub ahead of print
More information on the internet:
http://www.klinikum.uni-heidelberg.de/Immunologie.106593.0.html

Heidelberg University Hospital and School of Medicine
Health care, research, and teaching of international reputation
The Heidelberg University Hospital is one of the largest and most prestigious medical centers in Germany; the medical school at Heidelberg University is an internationally renowned biomedical research institute in Europe. Their common goal is to develop new therapies and implement them quickly in patient care. Hospital and medical school employ around 7,000 people and are active in training and qualification. In more than 40 clinics and departments with 1,600 beds, some 500,000 in and outpatients are seen and treated every year. Currently, approx. 1,300 future physicians are studying in Heidelberg; the Heidelberg Curriculum Medicinale (HeiCuMed) is the top medical training program in Germany. (as of 12/2008)

For questions from journalists:

Dr. Annette Tuffs
Press and Public Relations at Heidelberg University Hospital
and Medical School at Heidelberg University
Im Neuenheimer Feld 672
69120 Heidelberg
Tel.: +49 (0)6221 / 56 45 36
Fax: +49 (0)6221 / 56 45 44
E-mail: annette.tuffs(at)med.uni-heidelberg.de

Dr. Annette Tuffs | EurekAlert!
Further information:
http://www.klinikum.uni-heidelberg.de/

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>