Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Well-known enzyme is unexpected contributor to brain growth

16.03.2009
An enzyme researchers have studied for years because of its potential connections to cancer, diabetes, heart disease, hypertension and stroke, appears to have yet another major role to play: helping create and maintain the brain.

When scientists at Washington University School of Medicine in St. Louis selectively disabled the enzyme AMP-activated protein kinase (AMPK) in mouse embryos, overall brain size was reduced by 50 percent, the cerebrum and cerebellum were shrunken, and the mice died within three weeks of birth.

Researchers showed that the version of AMPK they disabled was essential to the survival of neural stem cells that create the central nervous system. Many scientists believe these same cells also regularly produce new brain cells essential for learning and memory and the general upkeep of the adult brain.

"For years, scientists have showed how AMPK regulates multiple metabolic processes, and revealed how that influence can affect cancer, diabetes, and many other diseases," says senior author Jeffrey Milbrandt, M.D., Ph.D., the David Clayson Professor of Neurology. "Now, for the first time, we've shown that AMPK can cause lasting changes in cell development. That's very exciting because it opens the possibility of modifying AMPK activity to improve brain function and health."

The study was the featured paper in the February issue of Developmental Cell.

AMPK regulates the energy usage of cells and becomes active when energy resources are low, such as during exercise or times of dietary restriction. Activated AMPK inhibits processes that consume energy, like protein synthesis or fatty acid synthesis, and promotes processes that produce energy, such as the oxidation of fatty acids, the uptake of the sugar glucose, or the creation of mitochondria, which are cellular energy-making units. Activated AMPK also suppresses cell reproduction, an ability that scientists have shown can help shut down the proliferation of some cancer cell lines.

The AMPK enzyme is composed of three subunits called alpha, beta and gamma. The human genome contains genes for two to three versions of each subunit. Until now, the beta unit seemed to be "a boring linker" that merely held the three subunits together, according to Milbrandt.

Instead, Milbrandt and Dasgupta found that the beta subunit was determining where AMPK did its job. AMPK with one version of the subunit, beta 1, was found both in the nucleus of cells and in the body of the cell, which is called the cytoplasm. AMPK with beta 2 was never found in the nucleus—just the cytoplasm.

They showed that when activated AMPK gets into the nucleus of stem cells, it inactivates the retinoblastoma protein, a master regulator of cell reproduction. This allows neural stem cells to survive and proliferate.

"Inhibiting AMPK is something that most cells don't like. It can lead to a variety of consequences, including cell death, but many cell types can tolerate it," says lead author Biplab Dasgupta, Ph.D., research instructor in pathology and immunology. "In contrast, neural stem cells undergo catastrophic cell death in the absence of AMPK containing the beta 1 subunit. We also suspect loss of this form of AMPK may cause severe problems for other stem cells."

Dasgupta calls the new finding particularly interesting given previous connections between AMPK and exercise.

"Exercise activates AMPK and improves cognitive function," says Dasgupta. "Our results suggest brain function may improve because additional activated AMPK makes it easier for adult neural stem cells to reproduce and become new brain cells."

Retinoblastoma, the protein regulated by AMPK in the nucleus, also has less well-defined influence on the ability of stem cells to take on specialized characteristics, and this has Milbrandt intrigued about possible connections between AMPK's new role in stem cells and the long-term health effects of malnutrition during pregnancy. A 1977 study of children born to women starved by the Nazis during World War II suggested that the children had increased risk of heart disease, diabetes, stroke and hypertension.

While these are some of the same disorders that have been linked to AMPK activity in adults, those previous links were made through AMPK's role as a manager of cellular energy usage. Milbrandt wonders if changes in AMPK activity triggered by malnutrition could also be affecting stem cell activity in ways that increase long-term health risks in developing infants.

AMPK's role reversal in stem cells calls for careful use of the enzyme in cancer therapy, the researchers note. Recent studies have shown that stem cells can become cancerous, and in those cancers the researchers now believe it might be better to inhibit AMPK than to activate it. Dasgupta will test this hypothesis on cancer stem cell lines.

Milbrandt plans to learn more about how production of different forms of AMPK is regulated.

"Manipulating this regulation may enable us encourage the development of new brain cells," he says. "We might use that not only to treat medical conditions where brain development is hampered but also to improve cognitive function generally."

Michael C. Purdy | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>