Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Well-known enzyme is unexpected contributor to brain growth

16.03.2009
An enzyme researchers have studied for years because of its potential connections to cancer, diabetes, heart disease, hypertension and stroke, appears to have yet another major role to play: helping create and maintain the brain.

When scientists at Washington University School of Medicine in St. Louis selectively disabled the enzyme AMP-activated protein kinase (AMPK) in mouse embryos, overall brain size was reduced by 50 percent, the cerebrum and cerebellum were shrunken, and the mice died within three weeks of birth.

Researchers showed that the version of AMPK they disabled was essential to the survival of neural stem cells that create the central nervous system. Many scientists believe these same cells also regularly produce new brain cells essential for learning and memory and the general upkeep of the adult brain.

"For years, scientists have showed how AMPK regulates multiple metabolic processes, and revealed how that influence can affect cancer, diabetes, and many other diseases," says senior author Jeffrey Milbrandt, M.D., Ph.D., the David Clayson Professor of Neurology. "Now, for the first time, we've shown that AMPK can cause lasting changes in cell development. That's very exciting because it opens the possibility of modifying AMPK activity to improve brain function and health."

The study was the featured paper in the February issue of Developmental Cell.

AMPK regulates the energy usage of cells and becomes active when energy resources are low, such as during exercise or times of dietary restriction. Activated AMPK inhibits processes that consume energy, like protein synthesis or fatty acid synthesis, and promotes processes that produce energy, such as the oxidation of fatty acids, the uptake of the sugar glucose, or the creation of mitochondria, which are cellular energy-making units. Activated AMPK also suppresses cell reproduction, an ability that scientists have shown can help shut down the proliferation of some cancer cell lines.

The AMPK enzyme is composed of three subunits called alpha, beta and gamma. The human genome contains genes for two to three versions of each subunit. Until now, the beta unit seemed to be "a boring linker" that merely held the three subunits together, according to Milbrandt.

Instead, Milbrandt and Dasgupta found that the beta subunit was determining where AMPK did its job. AMPK with one version of the subunit, beta 1, was found both in the nucleus of cells and in the body of the cell, which is called the cytoplasm. AMPK with beta 2 was never found in the nucleus—just the cytoplasm.

They showed that when activated AMPK gets into the nucleus of stem cells, it inactivates the retinoblastoma protein, a master regulator of cell reproduction. This allows neural stem cells to survive and proliferate.

"Inhibiting AMPK is something that most cells don't like. It can lead to a variety of consequences, including cell death, but many cell types can tolerate it," says lead author Biplab Dasgupta, Ph.D., research instructor in pathology and immunology. "In contrast, neural stem cells undergo catastrophic cell death in the absence of AMPK containing the beta 1 subunit. We also suspect loss of this form of AMPK may cause severe problems for other stem cells."

Dasgupta calls the new finding particularly interesting given previous connections between AMPK and exercise.

"Exercise activates AMPK and improves cognitive function," says Dasgupta. "Our results suggest brain function may improve because additional activated AMPK makes it easier for adult neural stem cells to reproduce and become new brain cells."

Retinoblastoma, the protein regulated by AMPK in the nucleus, also has less well-defined influence on the ability of stem cells to take on specialized characteristics, and this has Milbrandt intrigued about possible connections between AMPK's new role in stem cells and the long-term health effects of malnutrition during pregnancy. A 1977 study of children born to women starved by the Nazis during World War II suggested that the children had increased risk of heart disease, diabetes, stroke and hypertension.

While these are some of the same disorders that have been linked to AMPK activity in adults, those previous links were made through AMPK's role as a manager of cellular energy usage. Milbrandt wonders if changes in AMPK activity triggered by malnutrition could also be affecting stem cell activity in ways that increase long-term health risks in developing infants.

AMPK's role reversal in stem cells calls for careful use of the enzyme in cancer therapy, the researchers note. Recent studies have shown that stem cells can become cancerous, and in those cancers the researchers now believe it might be better to inhibit AMPK than to activate it. Dasgupta will test this hypothesis on cancer stem cell lines.

Milbrandt plans to learn more about how production of different forms of AMPK is regulated.

"Manipulating this regulation may enable us encourage the development of new brain cells," he says. "We might use that not only to treat medical conditions where brain development is hampered but also to improve cognitive function generally."

Michael C. Purdy | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>