Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel Enzyme from Tiny Gribble Could Prove a Boon for Biofuels Research

19.06.2013
Wood borer makes its own enzyme, which could thrive in industrial setting
Researchers from the United Kingdom, the Energy Department’s National Renewable Energy Laboratory (NREL), and the University of Kentucky have recently published a paper describing a novel cellulose-degrading enzyme from a marine wood borer Limnoria quadripunctata, commonly known as the gribble.

Gribbles are biologically intriguing because they exhibit a relatively unique ability to produce their own enzymes instead of using symbiotic microbes to break down the biomass they eat. New biomass-degrading enzymes from novel sources such as the gribble may prove beneficial to the biofuels industry.

Gribbles are 1-3 millimeters in length, but collectively they bore through wood quickly, and are responsible for significant natural and man-made marine timber damage around the world. Scientists at Universities of Portsmouth and York in the United Kingdom and the University of Kentucky in the United States, with researchers from NREL, are hoping to turn that special talent into a source of novel enzymes for the biofuels industry.

A paper describing the crystal structure of a key enzyme produced by the gribble appears online in Proceedings of the National Academy of Sciences of the United States of America. http://www.pnas.org/content/early/2013/05/31/1301502110.short

Gribbles live in inter-tidal zones and, similar to termites, they burrow into wood. Gribbles, unlike termites or many other animals including people, do not rely on gut bacteria to make enzymes to aid their digestion. Gribbles instead exhibit a sterile gut, and secrete their own enzymes into their guts made in a special organ termed the heptopancreas that runs the entire length of their body.

Interestingly, several of the enzymes produced by gribbles are in the same important enzyme classes that are typically harvested from fungi in the biosphere for industrially deconstructing the cellulose in biomass. The gribble enzymes hold promise of tolerating salts much better, likely due to the fact they evolved in a marine environment. This unique adaptation may have beneficial implications for the ability of the gribble enzymes to more efficiently operate in a high-solids, industrial environment, breaking biomass down more effectively into sugars, which can then be converted into ethanol or a hydrocarbon fuel to replace gasoline, diesel, or jet fuel.

The biofuels industry needs tough, efficient enzymes that are tolerant of industrial processes. “For biochemical conversion with enzymes, industry needs to push up to very high solids, with very little water around,” NREL Senior Scientist Gregg Beckham, one of the co-authors, said. “The structure of the gribble enzyme reveals new evolutionary adaptations that may suggest mechanisms for producing more robust, industrial enzymes for high-solids loadings environments.”

NREL ran computer simulations and aided in the structural and biochemical analysis of the enzyme.

The work leading to the paper provided deeper understanding of how the organism adapts and survives. NREL and UK scientists are now examining how features of the gribble enzymes could be incorporated into industrially relevant enzymes and settings.

NREL is the U.S. Department of Energy's primary national laboratory for renewable energy and energy efficiency research and development. NREL is operated for DOE by the Alliance for Sustainable Energy, LLC.

David Glickson | EurekAlert!
Further information:
http://www.nrel.gov

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>