Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Enzyme new potential target in treating blood cancer

A discovery by a research team with the Sahlgrenska Academy at Gothenburg University in Sweden may lead to new treatments for blood cancer and other diseases. By stopping the production of a specific enzyme, ICMT, researchers were able to alleviate disease symptoms in mice with blood cancer.

In many forms of cancer, the growth of tumors and their ability to spread are stimulated by a mutated gene that codes for a so-called RAS protein. This has led to intensive research into how to block the activity of these proteins.

“RAS proteins exist in all cells, anchored to the inside of the cell membrane, where they regulate cell growth and cell division. The enzyme we are studying helps RAS proteins get anchored to the cell membrane. By blocking this enzyme, we were able to inhibit the binding of RAS proteins to cell membranes and greatly improve the disease symptoms in mice with blood cancer,” says Associate Professor Martin Bergö, who directs research at the Wallberg? Laboratory at the Sahlgrenska Academy.

The research team has developed a genetically modified mouse that produces a mutated and constantly active RAS protein in its bone marrow, where new blood cells are generated. These mice develop a form of leukemia that is similar to a number of forms of blood cancer in humans. The pathogenic bone marrow cells divide uncontrollably, and the normal control of cell growth cannot turn them off. In these mice, the production of the enzyme called ICMT can also be stopped.

... more about:
»ICMT »RAS protein »Ras »enzyme »marrow

“When we inhibited the production of the enzyme, the development of blood cancer declined, and the uncontrolled growth of bone marrow cells was blocked. Another discovery was that normal bone marrow cells were not significantly affected by the ICMT enzyme. The means that future drugs for inhibiting ICMT could specifically target the pathogenic cells and leave normal cells intact. A drub that blocks this enzyme could be an effective future cancer treatment,” says Martin Bergö.

The research team also demonstrated that mice with an aggressive form of lung cancer lived longer and developed considerably smaller tumors when the ICMT enzyme was blocked. But even though the study strongly indicates that ICMT can be an effective target for cancer treatment, the findings now need to be corroborated by other mice with blood cancer and lung cancer, and drugs to inhibit the enzyme need to be produced and tested.

Ulrika Lundin | alfa
Further information:

Further reports about: ICMT RAS protein Ras enzyme marrow

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>