Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enzyme That Mutates Antibodies Also Targets Cancer-Causing Gene

15.12.2008
Rockefeller University scientists have found that the same enzyme that enables an effective immune response is also responsible for the DNA breaks that cause lymphomas.

The human immune system is in a perpetual state of self-experimentation. It expertly mutates and shuffles the DNA of its own cells to evolve new defenses against the vast array of microbes that try to invade our bodies. But when the genetic experiment goes awry, the result can be a deadly cancer.

Now, Rockefeller University scientists have discovered that the same enzyme that enables the immune system’s defensive creativity is also responsible for a particular genetic malfunction -- a translocation of one piece of DNA to the wrong chromosome -- that causes Burkitt’s lymphoma. The findings, to be published in the December 12 edition of Cell, suggest the enzyme, called activation-induced deaminase (AID), is probably involved in a broader range of cancers as well.

“We strongly suspect that many or all of the translocations of human lymphomas in mature B cells are the product of this enzyme,” says Michel C. Nussenzweig, Sherman Fairchild Professor and head of the Laboratory of Molecular Immunology. “And there’s more and more data to show that it may be involved in other cancers as well. It’s been identified in stomach cancers, for instance.”

A very specific translocation causes Burkitt’s lymphoma, a cancer that plagues children in equatorial Africa. It involves a DNA break in an immune system antibody gene and the much more rare break in a cancer-promoting gene called c-myc. Previous work had shown that AID was responsible for breaking antibody genes but not c-myc. In fact, scientists thought a host of other factors might be involved in the c-myc break, but AID had been all but ruled out.

Despite the prior studies, Davide Robbiani, a research associate in Nussenzweig’s lab and a Leukemia and Lymphoma Society Fellow, believed AID was the culprit. To prove it, he and his colleagues started by deleting the promoter region of the c-myc oncogene, rendering the gene inactive, in a mutant line of mice. By looking for -- and not finding -- the specific translocation in these mice, he showed that c-myc had to be active in order for its DNA break to take place.

He then inserted a DNA tag into the mouse genome that allowed him to induce a break at the c-myc gene, which occurs only very rarely if left to its own devices. He found that his artificially created breaks were comparable in most every way to the breaks caused by AID, but when he looked for the translocation in mice that didn’t produce this enzyme, they were nowhere to be found.

“This is a definitive study,” says Nussenzweig, who is also a Howard Hughes Medical Institute investigator. “We now know AID is causing damage in other parts of the genome, not just in antibody genes.”

Because AID normally enables the genetic experimentation that’s critical to an effective immune response, shutting it down even to fight cancer is perilous. “As a general rule, you wouldn’t want to give an AID inhibitor to everyone because immune systems would not be working so well,” Nussenzweig says. Still, a pharmaceutical AID inhibitor, if developed, might prove useful in treating certain tumors that are expressions of this powerful gene mutator.

The next step is to figure out exactly how AID works and identify other genetic sites where AID is active. “We are now developing the tools to do exactly that,” Robbiani says.

Brett Norman | Newswise Science News
Further information:
http://www.rockefeller.edu

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>