Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enzyme is key to clogged arteries

29.09.2009
Scientists at Queen Mary, University of London have made an important discovery in understanding what causes arteries to clog up.

They have discovered that an enzyme called matrix metalloproteinase-8 plays a crucial role in raising blood pressure and causing abnormal build-up of cells in the arteries – both of which increase the risk of heart disease.

Heart disease is the number one cause of death in the UK. The scientists say that their research could lead to new drugs for treating high blood pressure and preventing heart disease.

Shu Ye, Professor of Molecular Medicine and Genetics at Queen Mary, University of London led the study. He explained: "Our research tells us that this enzyme plays a crucial role in the build-up of fatty deposits in the arteries which causes heart disease.

"Many patients with high blood pressure or heart failure are currently treated with ACE inhibitor drugs. However, some patients do not respond sufficiently to ACE inhibitors alone. We hope that what we've found here could be the basis for new drugs that can enhance the effects of ACE inhibitors, which would reduce deaths from heart disease."

The researchers studied mice which were genetically altered so they could not produce the MMP8 enzyme. The mice were fed on a Western-style diet high in fat and cholesterol and compared to normal mice fed on the same diet. The mice which lacked the enzyme had clearer arteries and lower blood pressure.

The researchers also studied 2,000 patients who were being tested for clogs in arteries leading to their hearts with a test called a coronary angiogram. They found that around 25 per cent of these patients had a slightly different version of the gene for MMP8 and their arteries were more clogged than other patients.

The research was funded by the British Heart Foundation. These findings have just been published in the journal Circulation Research (doi:10.1161/CIRCRESAHA.109.200279).

Kerry Noble | EurekAlert!
Further information:
http://www.qmul.ac.uk

Further reports about: ACE ACE inhibitors MMP8 blood pressure enzyme heart disease high blood pressure

More articles from Life Sciences:

nachricht Hot vibrating gases under the electron spotlight
12.12.2017 | Institute of Industrial Science, The University of Tokyo

nachricht Plankton swim against the current
12.12.2017 | Schweizerischer Nationalfonds SNF

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>