Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enzyme helps stem cells improve recovery from limb injuries

15.05.2014

While it seems like restoring blood flow to an injured leg would be a good thing, it can actually cause additional damage that hinders recovery, researchers say.

Ischemia reperfusion injury affects nearly two million Americans annually with a wide variety of scenarios that temporarily impede blood flow – from traumatic limb injuries, to heart attacks, to donor organs, said Dr. Babak Baban, immunologist at the Medical College of Georgia and College of Dental Medicine at Georgia Regents University.

Restoring blood flow actually heightens inflammation and cell death rather than recovery for many of these patients.

"Think about trying to hold onto a nuclear power plant after you unplug the electricity and cannot pump water to cool it down," said Dr. Jack Yu, Chief of MCG's Section of Plastic and Reconstructive Surgery. "All kinds of bad things start happening."

... more about:
»IDO »MCG »death »immune »inflammation »injuries »limb »mitochondria »therapy

Baban and Yu are collaborators on a study published in the journal PLOS ONE that shows one way stem cell therapy appears to intervene is with the help of an enzyme also used by a fetus to escape rejection by the mother's immune system.

Earlier studies indicate stem cells may improve recovery both by enabling new blood vessel growth and by turning down the now-severe inflammation, Baban said. The new study shows that indoleomine 2,3 dioxygenase, or IDO, widely known to dampen the immune response and create tolerance, plays an important role in regulating inflammation in that scenario. Stems cells and numerous other cell types are known to express IDO.

In fact, IDO boosted stem cell efficacy by about a third in their studies in animal models comparing the therapy in normal mice versus mice missing IDO. The researchers documented decreased expression of inflammatory markers, swelling and cell death, which correlate with a shorter, improved recovery.

That could be just what the doctor ordered for these patients, said Baban, the study's corresponding author. "We don't want to turn off the immune system, we want to turn it back to normal," he said.

Problems start with even a short period of inadequate blood and nutrients resulting in the rapid accumulation of destructive acidic metabolites, free radicals, and damage to cell structures, Yu said. Cell power plants, called mitochondria, which should be producing the energy source ATP, are among the early casualties, quickly becoming fat, leaky, and dysfunctional.

"The mitochondria are sick; they are very, very sick," Yu said. When blood flow is restored, it can put huge additional stress on sick powerhouses.

"They start to leak things that should not be outside the mitochondria," he said. Without adequate energy and with leaky powerhouses, cells quickly succumb. Inflammation, which is part of the normal healing process, escalates to help clean up the mess, but instead further exacerbates the problem.

While their findings were in limb injuries, the researchers say they should translate to the myriad of scenarios resulting in reperfusion injury. In fact, in just a short two hours in the operating room, Yu has seen free flaps, where tissue is moved from one area of the body to another to cover a burn or rebuild a breast, start dying from ischemia reperfusion injury.

"It cuts across many, many individual disease conditions," Yu said. Transplant centers already are experimenting with pulsing donor organs to avoid reperfusion trauma.

Next steps include seeing if more is better, by giving more stem cells – the researchers only gave one dose in the studies – as well as IDO-enhancing drugs, Baban said. This will include incubating stem cells with IDO, Baban said.

The researchers note that stem cell therapy isn't yet used to help patients' injured limbs recover, but is being studied clinically to aid stroke and heart attack recovery at MCG and other centers. Right now, the most physicians can do is restore blood flow and give broad-spectrum antibiotics.

"Sometimes it works, sometimes it doesn't," Yu said. "That is why this kind of pharmacologic intervention could be very, very important.

Endogenous stems cells enable the body to replace cells that are lost to wear and tear and aging. IDO is one of numerous immune modulators in the body. It remains unclear whether some individuals have higher IDO levels.

Dr. Mohamad Masoumy, a fourth-year general surgery resident at MCG and GR Health System, is first author on the PLOS ONE study.

###

Toni Baker
Communications Director
Medical College of Georgia
Georgia Regents University
706-721-4421 Office
706-825-6473 Cell
tbaker@gru.edu

Toni Baker | Eurek Alert!
Further information:
http://www.gru.edu

Further reports about: IDO MCG death immune inflammation injuries limb mitochondria therapy

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>