Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enzyme helps stem cells improve recovery from limb injuries

15.05.2014

While it seems like restoring blood flow to an injured leg would be a good thing, it can actually cause additional damage that hinders recovery, researchers say.

Ischemia reperfusion injury affects nearly two million Americans annually with a wide variety of scenarios that temporarily impede blood flow – from traumatic limb injuries, to heart attacks, to donor organs, said Dr. Babak Baban, immunologist at the Medical College of Georgia and College of Dental Medicine at Georgia Regents University.

Restoring blood flow actually heightens inflammation and cell death rather than recovery for many of these patients.

"Think about trying to hold onto a nuclear power plant after you unplug the electricity and cannot pump water to cool it down," said Dr. Jack Yu, Chief of MCG's Section of Plastic and Reconstructive Surgery. "All kinds of bad things start happening."

... more about:
»IDO »MCG »death »immune »inflammation »injuries »limb »mitochondria »therapy

Baban and Yu are collaborators on a study published in the journal PLOS ONE that shows one way stem cell therapy appears to intervene is with the help of an enzyme also used by a fetus to escape rejection by the mother's immune system.

Earlier studies indicate stem cells may improve recovery both by enabling new blood vessel growth and by turning down the now-severe inflammation, Baban said. The new study shows that indoleomine 2,3 dioxygenase, or IDO, widely known to dampen the immune response and create tolerance, plays an important role in regulating inflammation in that scenario. Stems cells and numerous other cell types are known to express IDO.

In fact, IDO boosted stem cell efficacy by about a third in their studies in animal models comparing the therapy in normal mice versus mice missing IDO. The researchers documented decreased expression of inflammatory markers, swelling and cell death, which correlate with a shorter, improved recovery.

That could be just what the doctor ordered for these patients, said Baban, the study's corresponding author. "We don't want to turn off the immune system, we want to turn it back to normal," he said.

Problems start with even a short period of inadequate blood and nutrients resulting in the rapid accumulation of destructive acidic metabolites, free radicals, and damage to cell structures, Yu said. Cell power plants, called mitochondria, which should be producing the energy source ATP, are among the early casualties, quickly becoming fat, leaky, and dysfunctional.

"The mitochondria are sick; they are very, very sick," Yu said. When blood flow is restored, it can put huge additional stress on sick powerhouses.

"They start to leak things that should not be outside the mitochondria," he said. Without adequate energy and with leaky powerhouses, cells quickly succumb. Inflammation, which is part of the normal healing process, escalates to help clean up the mess, but instead further exacerbates the problem.

While their findings were in limb injuries, the researchers say they should translate to the myriad of scenarios resulting in reperfusion injury. In fact, in just a short two hours in the operating room, Yu has seen free flaps, where tissue is moved from one area of the body to another to cover a burn or rebuild a breast, start dying from ischemia reperfusion injury.

"It cuts across many, many individual disease conditions," Yu said. Transplant centers already are experimenting with pulsing donor organs to avoid reperfusion trauma.

Next steps include seeing if more is better, by giving more stem cells – the researchers only gave one dose in the studies – as well as IDO-enhancing drugs, Baban said. This will include incubating stem cells with IDO, Baban said.

The researchers note that stem cell therapy isn't yet used to help patients' injured limbs recover, but is being studied clinically to aid stroke and heart attack recovery at MCG and other centers. Right now, the most physicians can do is restore blood flow and give broad-spectrum antibiotics.

"Sometimes it works, sometimes it doesn't," Yu said. "That is why this kind of pharmacologic intervention could be very, very important.

Endogenous stems cells enable the body to replace cells that are lost to wear and tear and aging. IDO is one of numerous immune modulators in the body. It remains unclear whether some individuals have higher IDO levels.

Dr. Mohamad Masoumy, a fourth-year general surgery resident at MCG and GR Health System, is first author on the PLOS ONE study.

###

Toni Baker
Communications Director
Medical College of Georgia
Georgia Regents University
706-721-4421 Office
706-825-6473 Cell
tbaker@gru.edu

Toni Baker | Eurek Alert!
Further information:
http://www.gru.edu

Further reports about: IDO MCG death immune inflammation injuries limb mitochondria therapy

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>