Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enzyme helps prepare lung tissue for metastatic development

17.02.2011
A Massachusetts General Hospital (MGH) study has identified a new role for an important enzyme in preparing lung tissue for the development of metastases. Published in the early edition of Proceedings of the National Academy of Sciences, the report describes how focal adhesion kinase (FAK) is involved in producing areas of vascular leakiness in lung tissue – known to be part of the premetastatic process – and increases expression of a molecule that attracts cancer cells to potential metastatic sites.

"Blood from all tissues of the body travels to the lungs for oxygenation, increasing the likelihood that circulating metastatic cells will interact with the lung microvasculature," says Rakesh K. Jain, PhD, director of the Steele Laboratory for Tumor Biology at MGH and senior author of the study. "Identifying factors that prepare this 'hospitable soil' for tumor formation may help us develop strategies to slow or halt that process."

In order to form metastases, cancer cells carried through the bloodstream need to find an environment that allows them to adhere and proliferate. While recent research supports the hypothesis that primary tumors secrete factors that prepare distant sites for potential metastatic development, defining the role of specific factors has been challenging. The current study investigated whether the ability of tumors in other parts of the body to induce formation of distinct areas of abnormal leakiness in lung tissue contributes to the development of metastases.

The researchers first confirmed that either the presence of an implanted tumor or infusions of factors secreted by tumors produced localized areas of leakiness in the lungs of mice. Analysis of the tumor-secreted factors identified specific molecules known to increase vascular permeability, including the angiogenesis-inducing vascular endothelial growth factor (VEGF). Metastatic cells infused into mice treated with either tumor-secreted factors or VEGF preferentially adhered to sites of leaky lung tissue, and both this attraction of tumor cells and the increase in vascular permeability were reduced by blocking VEGF activity.

Since VEGF is known to activate FAK – which plays a role in cellular signaling – in the endothelial cells that line pulmonary blood vessels, the researchers analyzed levels of the enzyme at the sites of induced vascular leakiness and found them to be elevated. "Blocking the activity of FAK in lung endothelial cells reduced both vascular permeability and the adhesion of metastatic cells to those tissues. Additional genetic experiments revealed that FAK produces these effects through increased local expression of the cellular adhesion molecule E-selectin," says Dai Fukumura, MD, PhD, of the Steele Lab, a co-senior author of the report.

Co-senior author Dan G. Duda, DMD, PhD, also of the Steele Lab, adds, "Anti-metastatic therapy is the ultimate frontier for cancer therapy, but existing treatments – both traditional chemotherapy and newer antiangiogenesis agents – have limited effectiveness in preventing the development of metastases. Our findings provide proof of principle that FAK inhibition is a valid antimetastatic strategy that should be investigated in future translational studies."

Jain is the Cook Professor of Radiation Oncology (Tumor Biology), Duda an assistant professor of Radiation Oncology, and Fukumura an associate professor of Radiation Oncology at Harvard Medical School. The lead author of the PNAS paper is Sachie Hiratsuka, MD, PhD, of the Steele Laboratory at MGH. Additional co-authors are Shom Goel, MD, and Walid Kamoun, PhD, Steele Lab; and Yoshiro Maru, MD, PhD, Tokyo Women's Medical University. The study was supported by grants from the National Institutes of Health and other funders.

Celebrating the 200th anniversary of its founding in 1811, Massachusetts General Hospital is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of nearly $700 million and major research centers in AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, human genetics, medical imaging, neurodegenerative disorders, regenerative medicine, systems biology, transplantation biology and photomedicine.

Sue McGreevey | EurekAlert!
Further information:
http://www.mgh.harvard.edu

More articles from Life Sciences:

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht New weapon against Diabetes
09.12.2016 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Cloud Formation: How Feldspar Acts as Ice Nucleus

09.12.2016 | Life Sciences

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>