Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enzyme fights mutated protein in inherited Parkinson's disease

30.06.2009
An enzyme that naturally occurs in the brain helps destroy the mutated protein that is the most common cause of inherited Parkinson’s disease, researchers at UT Southwestern Medical Center have found.
Their study, using human cells, provides a focus for further research into halting the action of the mutated protein. One of the most famous carriers of the mutation is Google co-founder Sergey Brin, who wrote about it on his blog in 2008.

“There are currently enormous efforts to identify potential therapies based on inhibiting this mutated protein,” said Dr. Matthew Goldberg, assistant professor of neurology and psychiatry and senior author of the paper, which appears online in the journal Public Library of Science.

“Our paper is a major advance because we identify a protein that binds to the mutated protein and promotes its breakdown,” he said.

The particular mutation that they studied affects a protein whose function is not well understood. In its normal form, it appears to have multiple sites where other molecules can attach themselves, like a space station with many docking areas.

Several mutations can affect the protein, which is named LRRK2. Some of the mutations cause Parkinson’s disease.

The current theory is that the mutation leads to increased function of LRRK2 and to the formation of abnormal clumps of proteins inside brain nerve cells. The cells eventually die from these effects.

In the current study, the researchers used cultured human kidney cells and found that LRRK2 and a protein called CHIP “robustly” associated with each other.

Further testing showed that CHIP and LRRK2 could bind to each other in two different ways, either directly or indirectly by a third molecule that acted as a bridge.

When CHIP bound to either the normal or mutant form of LRRK2, levels of LRRK2 in the cell decreased, the researchers found. This occurred because the cells increased the rate at which they destroyed LRRK2.

“CHIP may be a useful therapeutic target for treatments to break down LRRK2 in people with Parkinson’s,” Dr. Goldberg said.

“Our next step is to identify cellular mechanisms that signal LRRK2 to be degraded by CHIP or by other mechanisms,” he said. “Because LRRK2 mutations are believed to cause Parkinsonism by increasing the activity of LRRK2, enhancing the normal mechanisms that target LRRK2 for degradation by CHIP may be therapeutically beneficial.”

Lead author Xiaodong Ding, senior research associate in neurology at UT Southwestern, also contributed to the study.

The study was funded in part by the David M. Crowley Foundation.

Visit www.utsouthwestern.org/neurosciences to learn more about UT Southwestern’s clinical services in the neurosciences.

Aline McKenzie | EurekAlert!
Further information:
http://www.utsouthwestern.edu

Further reports about: CHIP robustly LRRK2 Parkinson cellular mechanism enzyme

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>