Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enzyme fights mutated protein in inherited Parkinson's disease

30.06.2009
An enzyme that naturally occurs in the brain helps destroy the mutated protein that is the most common cause of inherited Parkinson’s disease, researchers at UT Southwestern Medical Center have found.
Their study, using human cells, provides a focus for further research into halting the action of the mutated protein. One of the most famous carriers of the mutation is Google co-founder Sergey Brin, who wrote about it on his blog in 2008.

“There are currently enormous efforts to identify potential therapies based on inhibiting this mutated protein,” said Dr. Matthew Goldberg, assistant professor of neurology and psychiatry and senior author of the paper, which appears online in the journal Public Library of Science.

“Our paper is a major advance because we identify a protein that binds to the mutated protein and promotes its breakdown,” he said.

The particular mutation that they studied affects a protein whose function is not well understood. In its normal form, it appears to have multiple sites where other molecules can attach themselves, like a space station with many docking areas.

Several mutations can affect the protein, which is named LRRK2. Some of the mutations cause Parkinson’s disease.

The current theory is that the mutation leads to increased function of LRRK2 and to the formation of abnormal clumps of proteins inside brain nerve cells. The cells eventually die from these effects.

In the current study, the researchers used cultured human kidney cells and found that LRRK2 and a protein called CHIP “robustly” associated with each other.

Further testing showed that CHIP and LRRK2 could bind to each other in two different ways, either directly or indirectly by a third molecule that acted as a bridge.

When CHIP bound to either the normal or mutant form of LRRK2, levels of LRRK2 in the cell decreased, the researchers found. This occurred because the cells increased the rate at which they destroyed LRRK2.

“CHIP may be a useful therapeutic target for treatments to break down LRRK2 in people with Parkinson’s,” Dr. Goldberg said.

“Our next step is to identify cellular mechanisms that signal LRRK2 to be degraded by CHIP or by other mechanisms,” he said. “Because LRRK2 mutations are believed to cause Parkinsonism by increasing the activity of LRRK2, enhancing the normal mechanisms that target LRRK2 for degradation by CHIP may be therapeutically beneficial.”

Lead author Xiaodong Ding, senior research associate in neurology at UT Southwestern, also contributed to the study.

The study was funded in part by the David M. Crowley Foundation.

Visit www.utsouthwestern.org/neurosciences to learn more about UT Southwestern’s clinical services in the neurosciences.

Aline McKenzie | EurekAlert!
Further information:
http://www.utsouthwestern.edu

Further reports about: CHIP robustly LRRK2 Parkinson cellular mechanism enzyme

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>