Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enzyme may drive breast cancer growth

19.05.2011
A recently discovered enzyme drives the production of a potent form of estrogen in human breast cancer tissue, researchers from the University of Illinois at Chicago College of Medicine have found.

The extra-strength estrogen, called estradiol, then drives the production of even more enzyme, in what may be a lethal feed-forward mechanism. Estradiol has been implicated in exacerbating tumor growth in breast cancer.

The research is published in the May issue of the journal Molecular Endocrinology.

Scientists had observed the increased production of an unknown protein in ovarian tissue in response to estrogen. UIC researchers under the direction of Geula Gibori, UIC professor of physiology and biophysics, then purified the protein and cloned its gene. Several laboratories established that it is an enzyme that converts a weak estrogen, estrone, to the much more potent estradiol.

The UIC researchers then examined the production of the enzyme in a line of breast cancer cells known to respond to estrogen levels.

"Estradiol up-regulates the very enzyme that produces estradiol, creating a positive cycle where this potent form of estrogen is being produced over and over again, sustaining its own production," said Aurora Shehu, UIC postdoctoral research associate in physiology and biophysics and first author of the study.

In human breast tissue, the researchers found a "dramatic" up-regulation in the cancerous cells but not in the surrounding benign tissue, said Gibori, who is principal investigator on the study. The surrounding tissue, however, is a rich source of the estrone that the enzyme needs to produce more estradiol, she said.

The researchers were able to show how estradiol turns on the gene that produces the enzyme, and that this activation also required at least one other known regulatory factor.

They found that tamoxifen, a drug widely used to inhibit breast cancer growth, prevents estradiol's stimulation of the enzyme and thus may shut down local production of estradiol in breast cancer cells.

"Breast cancer tumors with this enzyme are likely to be a much more aggressive and potentially deadly type of cancer," Gibori said. "Identifying this enzyme and how its expression is turned on gives medical researchers potential targets for disrupting the lethal production of estradiol in breast cancers."

The enzyme is a promising therapeutic target because blocking it may halt production only of the dangerous estradiol, which would reduce the side effects seen with other drugs that inhibit production of many estrogen-related compounds, Gibori said.

This study was supported by grants from the National Institutes of Health. Y. Sangeeta Devi, Kristin Luther, Julia Halpern, Jamie Le, Jifang Mao, Rachel Duan and Jonna Frasor from UIC and Constance Albarracin of the University of Texas, Houston, also contributed to the study.

For more information about UIC, visit www.uic.edu

Jeanne Galatzer-Levy | EurekAlert!
Further information:
http://www.uic.edu

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>