Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enzyme may drive breast cancer growth

19.05.2011
A recently discovered enzyme drives the production of a potent form of estrogen in human breast cancer tissue, researchers from the University of Illinois at Chicago College of Medicine have found.

The extra-strength estrogen, called estradiol, then drives the production of even more enzyme, in what may be a lethal feed-forward mechanism. Estradiol has been implicated in exacerbating tumor growth in breast cancer.

The research is published in the May issue of the journal Molecular Endocrinology.

Scientists had observed the increased production of an unknown protein in ovarian tissue in response to estrogen. UIC researchers under the direction of Geula Gibori, UIC professor of physiology and biophysics, then purified the protein and cloned its gene. Several laboratories established that it is an enzyme that converts a weak estrogen, estrone, to the much more potent estradiol.

The UIC researchers then examined the production of the enzyme in a line of breast cancer cells known to respond to estrogen levels.

"Estradiol up-regulates the very enzyme that produces estradiol, creating a positive cycle where this potent form of estrogen is being produced over and over again, sustaining its own production," said Aurora Shehu, UIC postdoctoral research associate in physiology and biophysics and first author of the study.

In human breast tissue, the researchers found a "dramatic" up-regulation in the cancerous cells but not in the surrounding benign tissue, said Gibori, who is principal investigator on the study. The surrounding tissue, however, is a rich source of the estrone that the enzyme needs to produce more estradiol, she said.

The researchers were able to show how estradiol turns on the gene that produces the enzyme, and that this activation also required at least one other known regulatory factor.

They found that tamoxifen, a drug widely used to inhibit breast cancer growth, prevents estradiol's stimulation of the enzyme and thus may shut down local production of estradiol in breast cancer cells.

"Breast cancer tumors with this enzyme are likely to be a much more aggressive and potentially deadly type of cancer," Gibori said. "Identifying this enzyme and how its expression is turned on gives medical researchers potential targets for disrupting the lethal production of estradiol in breast cancers."

The enzyme is a promising therapeutic target because blocking it may halt production only of the dangerous estradiol, which would reduce the side effects seen with other drugs that inhibit production of many estrogen-related compounds, Gibori said.

This study was supported by grants from the National Institutes of Health. Y. Sangeeta Devi, Kristin Luther, Julia Halpern, Jamie Le, Jifang Mao, Rachel Duan and Jonna Frasor from UIC and Constance Albarracin of the University of Texas, Houston, also contributed to the study.

For more information about UIC, visit www.uic.edu

Jeanne Galatzer-Levy | EurekAlert!
Further information:
http://www.uic.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>