Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Enzyme controls transport of genomic building blocks


Our DNA and its architecture are duplicated every time our cells divide.

Histone proteins are key building blocks of this architecture and contain crucial information that regulates our genes. Danish researchers show how an enzyme controls reliable and high-speed delivery of histones to DNA copying hubs in our cells. This shuttling mechanism is crucial to maintain normal function of our genes and prevent disease. The results are published in the journal Nature Communications.

Studies of TLK1 in the Laboratory

This is Ilnaz Klimovskaia in the lab.

Credit: Anja Groth, BRIC

Interdisciplinary research team finds cellular high-speed shuttle

An interdisciplinary team of researchers from BRIC, University of Copenhagen and University of Southern Denmark have identified a cellular transport mechanism so fast and finely tuned that it compares to an Asian fast-speed train.

... more about:
»Asf1 »BRIC »DNA »activity »blocks »copying »crucial »enzyme »function »genes »genomic »histones

"Using advanced laboratory techniques, we have revealed how an enzyme called TLK1 regulates the transport of histones to DNA copying hubs in our cells. Such a devoted supply of histones, is crucial to maintain the genomic architecture when our cells divide", says Ilnaz Klimovskaia who has been spearheading the experimental work as part of her PhD-studies at BRIC.

The new results show that TLK1 controls the activity of a molecule called Asf1. Asf1 act as a freight train that transports histones to the nuclei of our cells where the DNA is copied during cell divisions. The enzymatic activity of TLK1 turn Asf1 into a fast-speed train, capable of precise, fast and timely transport of histones to newly formed DNA.

TLK1 contribute to cellular identity

Histones play an important role for the activity of our genes, as they contain information that can turn on or off genes. The information is communicated only when DNA is wrapped around the histones, to form the ordered genomic architecture called chromatin. As all our cells contain exactly the same genes, the histone information is crucial to activate only the sub-set of genes necessary to maintain a certain cellular identity. For example, heart genes needs only to be turned on in heart cells, but turned off in other cell types.

"We show that TLK can boost the supply of histones at critical time points. By controlling the transport of histones to our DNA, TLK and Asf1 ensure that the chromatin architecture and its information are copied correctly during cell division, so that cell identity is maintained", explains Ilnaz Klimovskaia.

Loss of chromatin integrity in cancer development

A tight coordination between DNA duplication and supply of major chromatin building blocks like histones, are crucial to maintain normal function of our cells. If the chromatin architecture is wrong, it can affect both gene expression as well as the stability of our DNA. Together, this is a dangerous cocktail that might fuel cellular changes and lead to cancer development.

"Our research adds a new layer to the understanding of how chromatin is maintained when cells in our body divides. This information is crucial to understand how cells maintain their identity and protect their genome, which is essential to avoid cancer development", says associate professor Anja Groth, who has been heading the research team.

The next step for the research team is to dig deeper into the understanding of how chromatin duplication is controlled. The team is also exploring whether targeting of the TLK enzyme could be useful in cancer therapy, as they speculate that reducing the supply of histones in highly dividing cancer cells, might make tumor cells more vulnerable to already existing cancer drugs.

Katrine Sonne-Hansen | EurekAlert!
Further information:

Further reports about: Asf1 BRIC DNA activity blocks copying crucial enzyme function genes genomic histones

More articles from Life Sciences:

nachricht Flipping molecular attachments amps up activity of CO2 catalyst
06.10.2015 | DOE/Brookhaven National Laboratory

nachricht Safe nanomotors propelled by sugar
06.10.2015 | Max-Planck-Institut für Intelligente Systeme

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists shrink particle accelerator

Prototype demonstrates feasibility of building terahertz accelerators

An interdisciplinary team of researchers has built the first prototype of a miniature particle accelerator that uses terahertz radiation instead of radio...

Im Focus: Simple detection of magnetic skyrmions

New physical effect: researchers discover a change of electrical resistance in magnetic whirls

At present, tiny magnetic whirls – so called skyrmions – are discussed as promising candidates for bits in future robust and compact data storage devices. At...

Im Focus: High-speed march through a layer of graphene

In cooperation with the Center for Nano-Optics of Georgia State University in Atlanta (USA), scientists of the Laboratory for Attosecond Physics of the Max Planck Institute of Quantum Optics and the Ludwig-Maximilians-Universität have made simulations of the processes that happen when a layer of carbon atoms is irradiated with strong laser light.

Electrons hit by strong laser pulses change their location on ultrashort timescales, i.e. within a couple of attoseconds (1 as = 10 to the minus 18 sec). In...

Im Focus: Battery Production: Laser Light instead of Oven-Drying and Vacuum Technology

At the exhibition BATTERY + STORAGE as part of WORLD OF ENERGY SOLUTIONS 2015 in Stuttgart, the Fraunhofer Institutes for Laser Technology ILT and for Ceramic Technologies and Systems IKTS will be showing how laser technology can be used to manufacture batteries both cost- and energy-efficiently.

In the truest sense, it’s all about watts at the Dresden-based Fraunhofer Institute for Ceramic Technologies and Systems IKTS and the Aachen-based Fraunhofer...

Im Focus: New Sinumerik features improve productivity and precision

EMO 2015, Hall 3, Booth E06/F03

  • Drive optimization called automatically by the part program boosts productivity
  • Automatically switching the dynamic values to rapid traverse and interpolation...
All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

Graphene teams up with two-dimensional crystals for faster data communications

06.10.2015 | Information Technology

Laser-wielding physicists seize control of atoms' behavior

06.10.2015 | Physics and Astronomy

Flipping molecular attachments amps up activity of CO2 catalyst

06.10.2015 | Life Sciences

More VideoLinks >>>