Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enzyme controls transport of genomic building blocks

06.03.2014

Our DNA and its architecture are duplicated every time our cells divide.

Histone proteins are key building blocks of this architecture and contain crucial information that regulates our genes. Danish researchers show how an enzyme controls reliable and high-speed delivery of histones to DNA copying hubs in our cells. This shuttling mechanism is crucial to maintain normal function of our genes and prevent disease. The results are published in the journal Nature Communications.

Studies of TLK1 in the Laboratory

This is Ilnaz Klimovskaia in the lab.

Credit: Anja Groth, BRIC

Interdisciplinary research team finds cellular high-speed shuttle

An interdisciplinary team of researchers from BRIC, University of Copenhagen and University of Southern Denmark have identified a cellular transport mechanism so fast and finely tuned that it compares to an Asian fast-speed train.

... more about:
»Asf1 »BRIC »DNA »activity »blocks »copying »crucial »enzyme »function »genes »genomic »histones

"Using advanced laboratory techniques, we have revealed how an enzyme called TLK1 regulates the transport of histones to DNA copying hubs in our cells. Such a devoted supply of histones, is crucial to maintain the genomic architecture when our cells divide", says Ilnaz Klimovskaia who has been spearheading the experimental work as part of her PhD-studies at BRIC.

The new results show that TLK1 controls the activity of a molecule called Asf1. Asf1 act as a freight train that transports histones to the nuclei of our cells where the DNA is copied during cell divisions. The enzymatic activity of TLK1 turn Asf1 into a fast-speed train, capable of precise, fast and timely transport of histones to newly formed DNA.

TLK1 contribute to cellular identity

Histones play an important role for the activity of our genes, as they contain information that can turn on or off genes. The information is communicated only when DNA is wrapped around the histones, to form the ordered genomic architecture called chromatin. As all our cells contain exactly the same genes, the histone information is crucial to activate only the sub-set of genes necessary to maintain a certain cellular identity. For example, heart genes needs only to be turned on in heart cells, but turned off in other cell types.

"We show that TLK can boost the supply of histones at critical time points. By controlling the transport of histones to our DNA, TLK and Asf1 ensure that the chromatin architecture and its information are copied correctly during cell division, so that cell identity is maintained", explains Ilnaz Klimovskaia.

Loss of chromatin integrity in cancer development

A tight coordination between DNA duplication and supply of major chromatin building blocks like histones, are crucial to maintain normal function of our cells. If the chromatin architecture is wrong, it can affect both gene expression as well as the stability of our DNA. Together, this is a dangerous cocktail that might fuel cellular changes and lead to cancer development.

"Our research adds a new layer to the understanding of how chromatin is maintained when cells in our body divides. This information is crucial to understand how cells maintain their identity and protect their genome, which is essential to avoid cancer development", says associate professor Anja Groth, who has been heading the research team.

The next step for the research team is to dig deeper into the understanding of how chromatin duplication is controlled. The team is also exploring whether targeting of the TLK enzyme could be useful in cancer therapy, as they speculate that reducing the supply of histones in highly dividing cancer cells, might make tumor cells more vulnerable to already existing cancer drugs.

Katrine Sonne-Hansen | EurekAlert!
Further information:
http://www.bric.ku.dk

Further reports about: Asf1 BRIC DNA activity blocks copying crucial enzyme function genes genomic histones

More articles from Life Sciences:

nachricht Strong Evidence – New Insight in Muscle Function
27.04.2015 | Austrian Science Fund FWF

nachricht Cell fusion ‘eats up’ the ‘attractive cell’ in flowering plants
27.04.2015 | Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fast and Accurate 3-D Imaging Technique to Track Optically-Trapped Particles

KAIST researchers published an article on the development of a novel technique to precisely track the 3-D positions of optically-trapped particles having complicated geometry in high speed in the April 2015 issue of Optica.

Daejeon, Republic of Korea, April 23, 2015--Optical tweezers have been used as an invaluable tool for exerting micro-scale force on microscopic particles and...

Im Focus: NOAA, Tulane identify second possible specimen of 'pocket shark' ever found

Pocket sharks are among the world's rarest finds

A very small and rare species of shark is swimming its way through scientific literature. But don't worry, the chances of this inches-long vertebrate biting...

Im Focus: Drexel materials scientists putting a new spin on computing memory

Ever since computers have been small enough to be fixtures on desks and laps, their central processing has functioned something like an atomic Etch A Sketch, with electromagnetic fields pushing data bits into place to encode data.

Unfortunately, the same drawbacks and perils of the mechanical sketch board have been just as pervasive in computing: making a change often requires starting...

Im Focus: Exploding stars help to understand thunderclouds on Earth

How is lightning initiated in thunderclouds? This is difficult to answer - how do you measure electric fields inside large, dangerously charged clouds? It was discovered, more or less by coincidence, that cosmic rays provide suitable probes to measure electric fields within thunderclouds. This surprising finding is published in Physical Review Letters on April 24th. The measurements were performed with the LOFAR radio telescope located in the Netherlands.

How is lightning initiated in thunderclouds? This is difficult to answer - how do you measure electric fields inside large, dangerously charged clouds? It was...

Im Focus: On the trail of a trace gas

Max Planck researcher Buhalqem Mamtimin determines how much nitrogen oxide is released into the atmosphere from agriculturally used oases.

In order to make statements about current and future air pollution, scientists use models which simulate the Earth’s atmosphere. A lot of information such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HHL Energy Conference on May 11/12, 2015: Students Discuss about Decentralized Energy

23.04.2015 | Event News

“Developing our cities, preserving our planet”: Nobel Laureates gather for the first time in Asia

23.04.2015 | Event News

HHL's Entrepreneurship Conference on FinTech

13.04.2015 | Event News

 
Latest News

Strong Evidence – New Insight in Muscle Function

27.04.2015 | Life Sciences

The Future of Oil and Gas: Last of Her Kind

27.04.2015 | Power and Electrical Engineering

Tiny Lab Devices Could Attack Huge Problem of Drug-Resistant Infections

27.04.2015 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>