Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enzyme controls transport of genomic building blocks

06.03.2014

Our DNA and its architecture are duplicated every time our cells divide.

Histone proteins are key building blocks of this architecture and contain crucial information that regulates our genes. Danish researchers show how an enzyme controls reliable and high-speed delivery of histones to DNA copying hubs in our cells. This shuttling mechanism is crucial to maintain normal function of our genes and prevent disease. The results are published in the journal Nature Communications.

Studies of TLK1 in the Laboratory

This is Ilnaz Klimovskaia in the lab.

Credit: Anja Groth, BRIC

Interdisciplinary research team finds cellular high-speed shuttle

An interdisciplinary team of researchers from BRIC, University of Copenhagen and University of Southern Denmark have identified a cellular transport mechanism so fast and finely tuned that it compares to an Asian fast-speed train.

... more about:
»Asf1 »BRIC »DNA »activity »blocks »copying »crucial »enzyme »function »genes »genomic »histones

"Using advanced laboratory techniques, we have revealed how an enzyme called TLK1 regulates the transport of histones to DNA copying hubs in our cells. Such a devoted supply of histones, is crucial to maintain the genomic architecture when our cells divide", says Ilnaz Klimovskaia who has been spearheading the experimental work as part of her PhD-studies at BRIC.

The new results show that TLK1 controls the activity of a molecule called Asf1. Asf1 act as a freight train that transports histones to the nuclei of our cells where the DNA is copied during cell divisions. The enzymatic activity of TLK1 turn Asf1 into a fast-speed train, capable of precise, fast and timely transport of histones to newly formed DNA.

TLK1 contribute to cellular identity

Histones play an important role for the activity of our genes, as they contain information that can turn on or off genes. The information is communicated only when DNA is wrapped around the histones, to form the ordered genomic architecture called chromatin. As all our cells contain exactly the same genes, the histone information is crucial to activate only the sub-set of genes necessary to maintain a certain cellular identity. For example, heart genes needs only to be turned on in heart cells, but turned off in other cell types.

"We show that TLK can boost the supply of histones at critical time points. By controlling the transport of histones to our DNA, TLK and Asf1 ensure that the chromatin architecture and its information are copied correctly during cell division, so that cell identity is maintained", explains Ilnaz Klimovskaia.

Loss of chromatin integrity in cancer development

A tight coordination between DNA duplication and supply of major chromatin building blocks like histones, are crucial to maintain normal function of our cells. If the chromatin architecture is wrong, it can affect both gene expression as well as the stability of our DNA. Together, this is a dangerous cocktail that might fuel cellular changes and lead to cancer development.

"Our research adds a new layer to the understanding of how chromatin is maintained when cells in our body divides. This information is crucial to understand how cells maintain their identity and protect their genome, which is essential to avoid cancer development", says associate professor Anja Groth, who has been heading the research team.

The next step for the research team is to dig deeper into the understanding of how chromatin duplication is controlled. The team is also exploring whether targeting of the TLK enzyme could be useful in cancer therapy, as they speculate that reducing the supply of histones in highly dividing cancer cells, might make tumor cells more vulnerable to already existing cancer drugs.

Katrine Sonne-Hansen | EurekAlert!
Further information:
http://www.bric.ku.dk

Further reports about: Asf1 BRIC DNA activity blocks copying crucial enzyme function genes genomic histones

More articles from Life Sciences:

nachricht An evolutionary heads-up – The brain size advantage
22.05.2015 | Veterinärmedizinische Universität Wien

nachricht Endocrine disrupting chemicals in baby teethers
21.05.2015 | Goethe-Universität Frankfurt am Main

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

Im Focus: Gel filled with nanosponges cleans up MRSA infections

Nanoengineers at the University of California, San Diego developed a gel filled with toxin-absorbing nanosponges that could lead to an effective treatment for skin and wound infections caused by MRSA (methicillin-resistant Staphylococcus aureus), an antibiotic-resistant bacteria. This "nanosponge-hydrogel" minimized the growth of skin lesions on mice infected with MRSA - without the use of antibiotics. The researchers recently published their findings online in Advanced Materials.

To make the nanosponge-hydrogel, the team mixed nanosponges, which are nanoparticles that absorb dangerous toxins produced by MRSA, E. coli and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Mesoporous Particles for the Development of Drug Delivery System Safe to Human Bodies

22.05.2015 | Materials Sciences

Computing at the Speed of Light

22.05.2015 | Information Technology

Development of Gold Nanoparticles That Control Osteogenic Differentiation of Stem Cells

22.05.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>