Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enzyme controls transport of genomic building blocks

06.03.2014

Our DNA and its architecture are duplicated every time our cells divide.

Histone proteins are key building blocks of this architecture and contain crucial information that regulates our genes. Danish researchers show how an enzyme controls reliable and high-speed delivery of histones to DNA copying hubs in our cells. This shuttling mechanism is crucial to maintain normal function of our genes and prevent disease. The results are published in the journal Nature Communications.

Studies of TLK1 in the Laboratory

This is Ilnaz Klimovskaia in the lab.

Credit: Anja Groth, BRIC

Interdisciplinary research team finds cellular high-speed shuttle

An interdisciplinary team of researchers from BRIC, University of Copenhagen and University of Southern Denmark have identified a cellular transport mechanism so fast and finely tuned that it compares to an Asian fast-speed train.

... more about:
»Asf1 »BRIC »DNA »activity »blocks »copying »crucial »enzyme »function »genes »genomic »histones

"Using advanced laboratory techniques, we have revealed how an enzyme called TLK1 regulates the transport of histones to DNA copying hubs in our cells. Such a devoted supply of histones, is crucial to maintain the genomic architecture when our cells divide", says Ilnaz Klimovskaia who has been spearheading the experimental work as part of her PhD-studies at BRIC.

The new results show that TLK1 controls the activity of a molecule called Asf1. Asf1 act as a freight train that transports histones to the nuclei of our cells where the DNA is copied during cell divisions. The enzymatic activity of TLK1 turn Asf1 into a fast-speed train, capable of precise, fast and timely transport of histones to newly formed DNA.

TLK1 contribute to cellular identity

Histones play an important role for the activity of our genes, as they contain information that can turn on or off genes. The information is communicated only when DNA is wrapped around the histones, to form the ordered genomic architecture called chromatin. As all our cells contain exactly the same genes, the histone information is crucial to activate only the sub-set of genes necessary to maintain a certain cellular identity. For example, heart genes needs only to be turned on in heart cells, but turned off in other cell types.

"We show that TLK can boost the supply of histones at critical time points. By controlling the transport of histones to our DNA, TLK and Asf1 ensure that the chromatin architecture and its information are copied correctly during cell division, so that cell identity is maintained", explains Ilnaz Klimovskaia.

Loss of chromatin integrity in cancer development

A tight coordination between DNA duplication and supply of major chromatin building blocks like histones, are crucial to maintain normal function of our cells. If the chromatin architecture is wrong, it can affect both gene expression as well as the stability of our DNA. Together, this is a dangerous cocktail that might fuel cellular changes and lead to cancer development.

"Our research adds a new layer to the understanding of how chromatin is maintained when cells in our body divides. This information is crucial to understand how cells maintain their identity and protect their genome, which is essential to avoid cancer development", says associate professor Anja Groth, who has been heading the research team.

The next step for the research team is to dig deeper into the understanding of how chromatin duplication is controlled. The team is also exploring whether targeting of the TLK enzyme could be useful in cancer therapy, as they speculate that reducing the supply of histones in highly dividing cancer cells, might make tumor cells more vulnerable to already existing cancer drugs.

Katrine Sonne-Hansen | EurekAlert!
Further information:
http://www.bric.ku.dk

Further reports about: Asf1 BRIC DNA activity blocks copying crucial enzyme function genes genomic histones

More articles from Life Sciences:

nachricht Cancer: Molecularly shutting down cancer cachexia
30.08.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Bringing artificial enzymes closer to nature
30.08.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Streamlining accelerated computing for industry

PyFR code combines high accuracy with flexibility to resolve unsteady turbulence problems

Scientists and engineers striving to create the next machine-age marvel--whether it be a more aerodynamic rocket, a faster race car, or a higher-efficiency jet...

Im Focus: X-ray optics on a chip

Waveguides are widely used for filtering, confining, guiding, coupling or splitting beams of visible light. However, creating waveguides that could do the same for X-rays has posed tremendous challenges in fabrication, so they are still only in an early stage of development.

In the latest issue of Acta Crystallographica Section A: Foundations and Advances , Sarah Hoffmann-Urlaub and Tim Salditt report the fabrication and testing of...

Im Focus: Piggyback battery for microchips: TU Graz researchers develop new battery concept

Electrochemists at TU Graz have managed to use monocrystalline semiconductor silicon as an active storage electrode in lithium batteries. This enables an integrated power supply to be made for microchips with a rechargeable battery.

Small electrical gadgets, such as mobile phones, tablets or notebooks, are indispensable accompaniments of everyday life. Integrated circuits in the interiors...

Im Focus: UCI physicists confirm possible discovery of fifth force of nature

Light particle could be key to understanding dark matter in universe

Recent findings indicating the possible discovery of a previously unknown subatomic particle may be evidence of a fifth fundamental force of nature, according...

Im Focus: Wi-fi from lasers

White light from lasers demonstrates data speeds of up to 2 GB/s

A nanocrystalline material that rapidly makes white light out of blue light has been developed by KAUST researchers.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The energy transition is not possible without Geotechnics

25.08.2016 | Event News

New Ideas for the Shipping Industry

24.08.2016 | Event News

A week of excellence: 22 of the world’s best computer scientists and mathematicians in Heidelberg

12.08.2016 | Event News

 
Latest News

Environmental DNA uncovers biodiversity in rivers

30.08.2016 | Ecology, The Environment and Conservation

Solar houses scientifically evaluated

30.08.2016 | Power and Electrical Engineering

Amazon forests: Biodiversity can help mitigate climate risks

30.08.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>