Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enzyme Action Could Be Target for Diabetes, Heart Disease Treatments

17.11.2010
Cardiac researchers at UC have found a new cellular pathway that could help in developing therapeutic treatments for obesity-related disorders, like diabetes and heart disease.

This research is being presented at the American Heart Association’s Scientific Sessions in Chicago Nov. 16.

Tapan Chatterjee, PhD, and researchers in the division of cardiovascular diseases found that action by the enzyme histone deacetylase 9 (HDAC9) can lead to obesity-induced body fat dysfunction and that HDAC9-regulated pathways could be targets for potential treatment options in obesity-related diseases.

"Failure of fat cells to differentiate and properly store excess calories in obesity is associated with adipose tissue (fat) inflammation, fatty liver disease, insulin resistance, diabetes and increased cardiovascular diseases,” Chatterjee says. "We know that dysfunctional fat tissue is the underlying culprit in obesity-related diseases; however, we do not know why fat tissue becomes dysfunctional when a person becomes obese.”

Chatterjee says researchers in this study first identified HDAC9 regulator of fat cell differentiation within the living organism.

"Caloric intake promotes HDAC9 down-regulation to allow the conversion of precursor fat cells to ‘functional’ fat cells, capable of efficiently storing excess calories for future use and also maintaining whole body lipid and glucose stability,” he says. "Ideally, fat cells should function as a reversible storage site of excess calories and as an endocrine organ to maintain systemic lipid and glucose stability.

"Unfortunately, during chronic over-feeding, we find HDAC9 level is up-regulated in fat tissue, thereby blocking the conversion which leads to adipose tissue dysfunction and the onset of diseases such as diabetes, liver disease, high blood pressure and heart disease—the nation’s No. 1 killer.”

Researchers examined various members of the HDAC family of proteins and found that only HDAC9 showed a direct correlation to differentiation of precursor fat cells, both from human and mouse fat tissues.

"HDAC9 down-regulation is necessary for the differentiation of precursor fat cells to mature fat cells; forced up-regulation of HDAC9 by genetic manipulation blocks the differentiation of the precursor fat cells,” Chatterjee says. "On the other hand, precursor fat cells from HDAC9 genetic knockout mice showed accelerated differentiation.

"We believe that HDAC9 keeps precursor fat cells in the undifferentiated state; metabolic cues trigger HDAC9 down-regulation allowing conversion of the precursor cells to mature fat cells. We are exploring the cellular signaling mechanism that promotes such down-regulation of this enzyme during the normal fat cell differentiation process.”

Chatterjee says researchers were really interested in the tie between increased HDAC9 levels in fat tissue of mice and the caloric overload.

"Fat tissues from these obese mice showed dysfunction, with increased expression of pro-inflammatory agents and decreased expression of hormones responsible for maintaining whole body lipid and glucose stability,” he says. "The fat tissues of these mice are not capable of efficiently storing excess calories and are not able to perform proper endocrine functions.

"The adaptive response fails for some reason during chronic caloric overload, leading to the generation of fat tissue mass that is dysfunctional.”

Chatterjee says the HDAC9 level in fat cells is the underlying molecular culprit for dysfunctional fat tissue during obesity.

"We are currently examining HDAC9 knockout mice subjected to chronic high-fat feeding and think that HDAC9 gene removal will protect mice from obesity-linked adipose tissue dysfunction and associated metabolic disorders,” he says.

"Identification of HDAC9 as a novel regulator of fat cell differentiation and the finding that elevated HDAC9 levels are associated with adipose tissue dysfunction in obesity are extremely interesting and novel findings,” he continues.

Chatterjee’s team is pursuing studies to understand how diet regulates HDAC9 levels in fat tissue and how HDAC9 up-regulation can be prevented during diet-induced obesity through pharmacological means.

"Our findings may help lead researchers to targeted therapies that may prevent the development of obesity-related disorders in humans.”

This study was funded by a grant from the National Institutes of Health.

Katie Pence | EurekAlert!
Further information:
http://www.uc.edu

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>