Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enzyme with a Sugar Antenna

30.01.2009
Researchers achieve semisynthesis of homogeneous glycoproteins

More than half of all human proteins, as well as many important pharmaceutical agents, are glycoproteins, which means that they contain sugar components. In general, natural glycoproteins do not have a homogeneous sugar component.

With modern purification techniques, it is practically impossible to isolate sufficient quantities of homogeneous glycoproteins for systematic biomedical studies. Synthesis in the lab is a good alternative—but also a very complex task. As they report in the journal Angewandte Chemie, scientists led by Carlo Unverzagt at the University of Bayreuth (Germany) have now successfully used a new strategy to synthesize ribonuclease C (RNase C), a glycosylated bovine pancreatic enzyme.

Sugar components play an important role in the water solubility, stability, and folding of glycoproteins. In addition, they participate in molecular -recognition processes, such as cell adhesion or the interaction of host cells with pathogens. The same protein with different sugar moieties can thus have different functions. RNase is an enzyme that occurs in various glycosylated forms. Because this enzyme has been intensively investigated before, it makes an interesting model system for research. RNase C contains a complex sugar component in the form of a double-ended “antenna”.

The conventional solid-phase synthesis used to build up peptides one amino acid at a time is much too complex for long peptide chains and sometimes doesn’t work at all because of side reactions. Unverzagt and his team thus built up RNase C sequentially from several fragments, connecting them by using “native chemical ligation”. In this technique, one peptide fragment is attached to the terminal cysteine group (sulfur-containing amino acid) of a second peptide fragment by means of a thioester group—a selective reaction that results in a natural peptide bond.

The researchers used solid-phase synthesis to make the critical peptide fragment that has the sugar antenna. Another fragment was obtained bacterially by means of a method derived from protein splicing. In this process, a protein sequence (intein) is autocatalytically split off from a fusion protein generated in a cell culture. The difficulty: as well as a terminal cysteine group, this protein fragment contains seven additional cysteines. Their sulfur–hydrogen groups are extremely reactive and sensitive toward oxidation. In order to protect them, they were “sealed off” as mixed disulfides. These protective groups could be easily removed afterwards.

Thanks to sophisticated techniques, the team was finally able to correctly attach the individual fragments, fold the enzyme into its natural form, and correctly couple the cysteines into disulfide bridges to form a functional RNase C.

Author: Carlo Unverzagt, Universität Bayreuth (Germany), http://www.old.uni-bayreuth.de/departments/boc/cont/

Title: Semisynthesis of a Homogeneous Glycoprotein Enzyme: Ribonuclease C

Angewandte Chemie International Edition, doi: 10.1002/anie.200804734

Carlo Unverzagt | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://www.old.uni-bayreuth.de/departments/boc/cont/

More articles from Life Sciences:

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How protein islands form
15.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>