Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enzyme with a Sugar Antenna

30.01.2009
Researchers achieve semisynthesis of homogeneous glycoproteins

More than half of all human proteins, as well as many important pharmaceutical agents, are glycoproteins, which means that they contain sugar components. In general, natural glycoproteins do not have a homogeneous sugar component.

With modern purification techniques, it is practically impossible to isolate sufficient quantities of homogeneous glycoproteins for systematic biomedical studies. Synthesis in the lab is a good alternative—but also a very complex task. As they report in the journal Angewandte Chemie, scientists led by Carlo Unverzagt at the University of Bayreuth (Germany) have now successfully used a new strategy to synthesize ribonuclease C (RNase C), a glycosylated bovine pancreatic enzyme.

Sugar components play an important role in the water solubility, stability, and folding of glycoproteins. In addition, they participate in molecular -recognition processes, such as cell adhesion or the interaction of host cells with pathogens. The same protein with different sugar moieties can thus have different functions. RNase is an enzyme that occurs in various glycosylated forms. Because this enzyme has been intensively investigated before, it makes an interesting model system for research. RNase C contains a complex sugar component in the form of a double-ended “antenna”.

The conventional solid-phase synthesis used to build up peptides one amino acid at a time is much too complex for long peptide chains and sometimes doesn’t work at all because of side reactions. Unverzagt and his team thus built up RNase C sequentially from several fragments, connecting them by using “native chemical ligation”. In this technique, one peptide fragment is attached to the terminal cysteine group (sulfur-containing amino acid) of a second peptide fragment by means of a thioester group—a selective reaction that results in a natural peptide bond.

The researchers used solid-phase synthesis to make the critical peptide fragment that has the sugar antenna. Another fragment was obtained bacterially by means of a method derived from protein splicing. In this process, a protein sequence (intein) is autocatalytically split off from a fusion protein generated in a cell culture. The difficulty: as well as a terminal cysteine group, this protein fragment contains seven additional cysteines. Their sulfur–hydrogen groups are extremely reactive and sensitive toward oxidation. In order to protect them, they were “sealed off” as mixed disulfides. These protective groups could be easily removed afterwards.

Thanks to sophisticated techniques, the team was finally able to correctly attach the individual fragments, fold the enzyme into its natural form, and correctly couple the cysteines into disulfide bridges to form a functional RNase C.

Author: Carlo Unverzagt, Universität Bayreuth (Germany), http://www.old.uni-bayreuth.de/departments/boc/cont/

Title: Semisynthesis of a Homogeneous Glycoprotein Enzyme: Ribonuclease C

Angewandte Chemie International Edition, doi: 10.1002/anie.200804734

Carlo Unverzagt | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://www.old.uni-bayreuth.de/departments/boc/cont/

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>