Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Environs Prompt Helpful Mutations as Plants Grow; Changes Passed On

06.07.2011
If a person were to climb a towering redwood and take a sample from the top and bottom of the tree, a comparison would show that the DNA are different.

Christopher A. Cullis, chair of biology at Case Western Reserve University, explains that this is the basis of his controversial research findings.

Cullis, who has spent over 40 years studying mutations within plants, most recently flax (Linum usitatissimum), has found that the environment not only weeds out harmful and useless mutations through natural selection, but actually influences helpful mutations.

Cullis published his findings in the International Journal of Genetics and Molecular Biology and repeated them in the Journal of Visualized Experiments, where he challenged other scientists to repeat his experiment themselves.

Specifically, Cullis focuses on mutations involving the appearance of a small sequence of DNA known as LIS-1 and how the environment affects these changes.

The controversy stems from the idea that the environment changes organisms as they grow and these changes are passed on.

While originally accepted, the theory was eventually thrown out because science revealed that animals pass along DNA through their gamete or sex cells, which are not affected by the environment. This concept was assumed to be the same for plants, but Cullis’s research says otherwise.

In his second study, three separate strands (the plastic strand, short strand, and tall strand) of the Stormont Cirrus variety of flax were grown under three separate conditions.

Each of the strands had been bred over multiple generations under different conditions: The plastic strand’s ancestors were grown under control conditions, the short strand’s ancestors were grown under low-nutrient conditions, and the tall strand’s ancestors were grown under high-nutrient conditions.

The experiment showed each strand responded to each condition in a different way, corresponding to the environment its ancestors were grown in. The plastic strand outgrew the other strands under control conditions, the short strand outgrew the other strands when few nutrients were available, and the tall strand grew best when nutrients were readily available.

All this information does not completely explain Cullis’s assertion that the environment can in a single generation help sift out the useful mutations.

This is where polymerase chain reaction (PCR) amplification of DNA comes in. Through this process, the researchers could see when a specific DNA sequence (in this case LIS-1) appears or disappears.

When the plastic strand is grown under low nutrient conditions, the LIS-1 sequence, which had been absent, appears and continues for future generations. Since the LIS-1 sequence helps plants survive when there is a shortage of nutrients, its presence helps confirm Cullis’s belief that the environment can act on how a plant mutates and keep helpful mutations, even within one generation.

These findings help explain why the top of a redwood is genetically different from the bottom. Young redwoods grow by the tips of the existing branches budding into meristems. Each new meristem is different from the tree because the environment has affected its genetic makeup. And as the redwood grows, the top becomes more and more genetically different from the bottom.

Due to the controversy surrounding Cullis’s findings, many scientists are hesitant to accept them as true. Cullis himself recalls at first being skeptical and thinking, “If this really works… [we can] get a plant that’s better adapted to its environment in one generation.”

These adapted plants have practical uses. Cullis hopes to identify the specific gene sequence responsible for flax’s ability to withstand harsh environments and insert it into the DNA sequence of other plants so that they too can withstand trying environments.

This would bypass the current method of genetically engineering plants, which involves isolating specific DNA sequences that control heat-resistance, cold-resistance, pest-resistance, etc., and instead narrows the effort down to one DNA sequence.

By inserting this sequence into the plant and growing it in a specific trying environment, scientists could make the plant resistant to what they want. All of that plant’s offspring would be adapted to the environment and ready to grow.

By making the plant do all the work, the price of producing better crops would be greatly reduced. This would greatly benefit developing nations that need a large supply of food in an otherwise harsh environment. The DNA sequence may no longer just help the plant survive, but can now help entire countries thrive.

Prepared by Kyle Smith, Case Western Reserve University student.

Kevin Mayhood | Newswise Science News
Further information:
http://www.case.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>