Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Environmentally Friendly Rockets

27.05.2011
Hydrogen-rich ionic liquid as a reaction partner for hydrogen peroxide in high-performance fuels

Many rockets, satellites, and spacecraft are driven by hydrazine, sometimes with an oxidizing agent like nitric acid or dinitrogen tetroxide. When filling tanks with these highly toxic substances, technicians must wear full protective clothing—and a failed launch can lead to significant environmental damage.

Researchers are thus looking for alternatives that are more environmentally friendly and less toxic, but just as powerful—requirements that are hard to meet in a single material. Stefan Schneider and his co-workers at the Air Force Laboratory (Edwards Air Force Base, USA) have now introduced a new approach in the journal Angewandte Chemie: special hydrogen-rich ionic liquids that self-ignite in the presence of hydrogen peroxide.

Despite the potential danger, hydrazine is used as a rocket fuel because it delivers high performance, can be stored for a relatively long time, and spontaneously ignites upon contact with an oxidizing agent or a suitable catalyst. The oxidizing agents used as rocket fuels are also dangerous. Dinitrogen tetroxide is less corrosive than nitric acid, but it is toxic and highly volatile. Hydrogen peroxide is a promising alternative because it is less corrosive and leads to much less toxic gas at room temperature. Its decomposition produces only water and oxygen.

As an alternative to hydrazine as a fuel component, Schneider and his co-workers propose an ionic liquid. Ionic liquids are compounds that consist of ions, namely positive and negatively charged particles, like a salt. However, they are not crystalline; they remain “molten” as a liquid at room temperature. Ionic liquids essentially do not vaporize, which prevents the formation of toxic vapors. It has previously not been possible to produce an ionic liquid that is flammable when partnered with hydrogen peroxide.

Schneider and his team have now overcome this barrier. The positively charged ion of their ionic liquid is a phosphorus atom bound to four hydrocarbon chains. At the core, however, lies the negatively charged ion made from one aluminum, four boron, and sixteen hydrogen atoms. The hydrogen-rich composition raises the power of the fuel component. “This aluminum borohydride ion can be viewed as a densified form of hydrogen stabilized by metal atoms. In fact, for a given tank size, liquids with this ion contain even more hydrogen than pure liquid hydrogen, without the difficult cooling requirements,” according to Schneider.

In order to test the ignitibility, the researchers applied drops of the novel ionic liquid onto various oxidizing agents. Upon contact with hydrogen peroxide, ignition was nearly instant; with fuming nitric acid it exploded. Says Schneider: “It is thus interesting as a potential component for greener high-performance fuels.”

Author: Stefan Schneider, Air Force Research Laboratory, Edwards AFB (USA), mailto:stefan.schneider@edwards.af.mil

Title: Green Bipropellants: Hydrogen-Rich Ionic Liquids that Are Hypergolic with Hydrogen Peroxide

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201101752

Stefan Schneider | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>