Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Environmentally friendly chemistry important for manufacturing pharmaceuticals

08.11.2012
Limiting the quantity of catalysts – substances that trigger a chemical reaction – used in the manufacture of pharmaceuticals is important, and research from the University of Gothenburg, Sweden, has now demonstrated that small quantities of copper work well in this respect.

“This is an important finding, not just academically but also for industry,” says chemist Per-Fredrik Larsson.

Catalysis is an incredibly valuable tool in the field of chemistry, with the Haber-Bosch process being one of the most important catalytic processes in the world. It is used to manufacture fertilizer, and calculations show that without it the world’s population would be just half of what it is today.

Precious metals are often used as catalysts in organic chemistry as they enable the production of many organic molecules with applications in areas such as pharmaceuticals and fine chemicals. As recently as 2010 Richard F. Heck, Ei-ichi Negishi and Akira Suzuki were awarded the Nobel Prize in Chemistry for their work on palladium catalysis.

“A problem with precious metals like palladium is that they are both expensive and harmful to the environment,” says Per-Fredrik Larsson at the Department of Chemistry and Molecular Biology.

Recent years have seen researchers evaluating several different non-precious metals – primarily iron and copper – as cheap and environmentally friendly alternatives to precious metals.

“Iron catalysts have proven to be a competitive alternative to precious metals for a number of reactions,” says Per-Fredrik Larsson. “An in-depth understanding of how these reactions work is incredibly important if we are to take this further. The results from our studies with iron led to several important insights into just how complex the chemistry can be.”

Larsson’s research group works not only with experimental methods but also with calculation models to understand how the chemistry works.

The trend for swapping precious metals for non-precious alternatives also has a flipside. It was discovered during experiments with iron catalysis in conjunction with professor Carsten Bolm of RWTH Aachen University in Germany that some reactions thought to be catalysed by iron had actually been catalysed by traces of copper in the commercially available iron source.

The fact that traces of copper could catalyse a number of different reactions was surprising as copper had previously been thought to be an ineffective catalyst requiring large quantities and high reaction temperatures.

“Our results show that copper has been given an undeservedly bad name as a catalyst,” says Per-Fredrik Larsson. “Given that copper chemistry is over a century old, it’s surprising that nobody’s realised this before.”

It is important in the pharmaceutical industry to limit the use of catalysts as the quantity of metal in the end-product is strictly regulated and the recovery process can be both difficult and expensive. As such, the finding that small quantities of copper can be used is an important discovery.

“We’ve developed and studied reactions with small quantities of copper and tried to understand how and why they work,” says Per-Fredrik Larsson.

The results and conclusions for iron and copper catalysts are a major contribution to this field of research and are important for its continued development.

Contact:
Per-Fredrik Larsson, Department of Chemistry and Molecular Biology,
tel: +46 (0)31 786 9104
or +46 (0)701 432640,
e-mail: per-fredrik.larsson@chem.gu.se

Helena Aaberg | idw
Further information:
http://www.gu.se

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

Researchers make flexible glass for tiny medical devices

24.03.2017 | Materials Sciences

Laser activated gold pyramids could deliver drugs, DNA into cells without harm

24.03.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>