Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Environmentally friendly chemistry important for manufacturing pharmaceuticals

08.11.2012
Limiting the quantity of catalysts – substances that trigger a chemical reaction – used in the manufacture of pharmaceuticals is important, and research from the University of Gothenburg, Sweden, has now demonstrated that small quantities of copper work well in this respect.

“This is an important finding, not just academically but also for industry,” says chemist Per-Fredrik Larsson.

Catalysis is an incredibly valuable tool in the field of chemistry, with the Haber-Bosch process being one of the most important catalytic processes in the world. It is used to manufacture fertilizer, and calculations show that without it the world’s population would be just half of what it is today.

Precious metals are often used as catalysts in organic chemistry as they enable the production of many organic molecules with applications in areas such as pharmaceuticals and fine chemicals. As recently as 2010 Richard F. Heck, Ei-ichi Negishi and Akira Suzuki were awarded the Nobel Prize in Chemistry for their work on palladium catalysis.

“A problem with precious metals like palladium is that they are both expensive and harmful to the environment,” says Per-Fredrik Larsson at the Department of Chemistry and Molecular Biology.

Recent years have seen researchers evaluating several different non-precious metals – primarily iron and copper – as cheap and environmentally friendly alternatives to precious metals.

“Iron catalysts have proven to be a competitive alternative to precious metals for a number of reactions,” says Per-Fredrik Larsson. “An in-depth understanding of how these reactions work is incredibly important if we are to take this further. The results from our studies with iron led to several important insights into just how complex the chemistry can be.”

Larsson’s research group works not only with experimental methods but also with calculation models to understand how the chemistry works.

The trend for swapping precious metals for non-precious alternatives also has a flipside. It was discovered during experiments with iron catalysis in conjunction with professor Carsten Bolm of RWTH Aachen University in Germany that some reactions thought to be catalysed by iron had actually been catalysed by traces of copper in the commercially available iron source.

The fact that traces of copper could catalyse a number of different reactions was surprising as copper had previously been thought to be an ineffective catalyst requiring large quantities and high reaction temperatures.

“Our results show that copper has been given an undeservedly bad name as a catalyst,” says Per-Fredrik Larsson. “Given that copper chemistry is over a century old, it’s surprising that nobody’s realised this before.”

It is important in the pharmaceutical industry to limit the use of catalysts as the quantity of metal in the end-product is strictly regulated and the recovery process can be both difficult and expensive. As such, the finding that small quantities of copper can be used is an important discovery.

“We’ve developed and studied reactions with small quantities of copper and tried to understand how and why they work,” says Per-Fredrik Larsson.

The results and conclusions for iron and copper catalysts are a major contribution to this field of research and are important for its continued development.

Contact:
Per-Fredrik Larsson, Department of Chemistry and Molecular Biology,
tel: +46 (0)31 786 9104
or +46 (0)701 432640,
e-mail: per-fredrik.larsson@chem.gu.se

Helena Aaberg | idw
Further information:
http://www.gu.se

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>