Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Environmental factors instruct lineage choice of blood progenitor cells

The research team led by Dr. Timm Schroeder, stem cell researcher at Helmholtz Zentrum München, has developed a new bioimaging method for observing the differentiation of hematopoietic progenitor cells (HPC) at the single-cell level.

With this method the researchers were able to prove for the first time that not only cell-intrinsic mechanisms, but also external environmental factors such as growth factors can control HPC lineage choice directly.

The findings, published in the current issue of the prestigious journal Science, provide an essential building block for understanding the molecular mechanisms of hematopoiesis and are an important prerequisite for optimizing therapeutic stem cell applications.

For decades scientists from various disciplines have discussed to what respective extent genetic predisposition and environmental factors influence human development. Likewise, the same ‘nature vs. nurture’ issue is debated by hematologists and stem cell researchers: Is multipotent progenitor cell differentiation influenced solely by cell-intrinsic mechanisms or is it also influenced by the environment of the cell? What role do growth factors such as cytokines play? Do they influence HPC lineage choice directly or do they merely regulate the survival of the cell after the lineage choice has been made? Despite the immense importance of cytokines for day-to-day clinical research – and not least their far-reaching significance commercially - this issue has been one of the key unknown factors in the stem cell biology of blood.

"This is simply because until now we did not have the suitable technology to observe the processes of cell differentiation and to measure them quantitatively," explained Dr. Timm Schroeder, research group leader at the Institute of Stem Cell Research of Helmholtz Zentrum München. "We didn’t know exactly what happens during this time span," Dr. Schroeder said. “That is why until now we could not prove what role cytokines play.”

With the new bioimaging techniques developed by Dr. Schroeder’s team, progenitor cells could be observed for a longer period and on the single-cell level. Depending on the kind of cytokines present, after a few days the HPC cultures contained only one cell type. The question remained unanswered whether this was a consequence of direct cytokine regulation or merely the result of sorting out “erroneously differentiated” cells by cell death. Using the new bioimaging techniques for continuous single-cell observation, Dr. Michael Rieger and students in Dr. Schroeder’s research group showed for the first time that no cell death could be detected during the entire cell differentiation process. This proves unambiguously that HPC lineage choices can be steered by external environmental factors such as in this case by cytokines. The hematopoietic progenitor cells are “instructed” by cytokines.

"These findings confirm that signaling pathways that are activated by cytokine receptors influence the lineage choices of the cells,” Dr. Schroeder said. “The new method offers us the unique chance to observe the effect of all the molecules involved in the differentiation process separately and to better understand their role. This is an important requirement for optimizing the therapeutic use of stem cells.”

Further information
Original publication:
Rieger MA, Hoppe PS, Smejkal BM, Eitelhuber AC & Schroeder T (2009): Hematopoietic cytokines can instruct lineage choice. Science 325:217-218
Directed by Professor Magdalena Götz, the Institute of Stem Cell Research at Helmholtz Zentrum München combines research on stem cells of the nervous system, the hematopoietic system and of the endoderm. Especially in view of clinical applications, the objective of the Institute is to elucidate the underlying mechanisms for the specification of stem cells in order to utilize these in a targeted manner to repair damaged cells.

Further information...

Helmholtz Zentrum München is the German Research Center for Environmental Health. As leading center oriented toward Environmental Health, it focuses on chronic and complex diseases which develop from the interaction of environmental factors and individual genetic disposition. Helmholtz Zentrum München has around 1680 staff members. The head office of the center is located in Neuherberg to the north of Munich on a 50-hectare research campus. Helmholtz Zentrum München belongs to the Helmholtz Association, Germany’s largest research organization, a community of 16 scientific-technical and medical-biological research centers with a total of 26,500 staff members.

Sven Winkler, Helmholtz Zentrum München – German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany. Phone: +49(0)89-3187-3946. Fax +49(0)89-3187-3324, email:

Sven Winkler | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>