Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Environmental factors instruct lineage choice of blood progenitor cells

17.07.2009
The research team led by Dr. Timm Schroeder, stem cell researcher at Helmholtz Zentrum München, has developed a new bioimaging method for observing the differentiation of hematopoietic progenitor cells (HPC) at the single-cell level.

With this method the researchers were able to prove for the first time that not only cell-intrinsic mechanisms, but also external environmental factors such as growth factors can control HPC lineage choice directly.

The findings, published in the current issue of the prestigious journal Science, provide an essential building block for understanding the molecular mechanisms of hematopoiesis and are an important prerequisite for optimizing therapeutic stem cell applications.

For decades scientists from various disciplines have discussed to what respective extent genetic predisposition and environmental factors influence human development. Likewise, the same ‘nature vs. nurture’ issue is debated by hematologists and stem cell researchers: Is multipotent progenitor cell differentiation influenced solely by cell-intrinsic mechanisms or is it also influenced by the environment of the cell? What role do growth factors such as cytokines play? Do they influence HPC lineage choice directly or do they merely regulate the survival of the cell after the lineage choice has been made? Despite the immense importance of cytokines for day-to-day clinical research – and not least their far-reaching significance commercially - this issue has been one of the key unknown factors in the stem cell biology of blood.

"This is simply because until now we did not have the suitable technology to observe the processes of cell differentiation and to measure them quantitatively," explained Dr. Timm Schroeder, research group leader at the Institute of Stem Cell Research of Helmholtz Zentrum München. "We didn’t know exactly what happens during this time span," Dr. Schroeder said. “That is why until now we could not prove what role cytokines play.”

With the new bioimaging techniques developed by Dr. Schroeder’s team, progenitor cells could be observed for a longer period and on the single-cell level. Depending on the kind of cytokines present, after a few days the HPC cultures contained only one cell type. The question remained unanswered whether this was a consequence of direct cytokine regulation or merely the result of sorting out “erroneously differentiated” cells by cell death. Using the new bioimaging techniques for continuous single-cell observation, Dr. Michael Rieger and students in Dr. Schroeder’s research group showed for the first time that no cell death could be detected during the entire cell differentiation process. This proves unambiguously that HPC lineage choices can be steered by external environmental factors such as in this case by cytokines. The hematopoietic progenitor cells are “instructed” by cytokines.

"These findings confirm that signaling pathways that are activated by cytokine receptors influence the lineage choices of the cells,” Dr. Schroeder said. “The new method offers us the unique chance to observe the effect of all the molecules involved in the differentiation process separately and to better understand their role. This is an important requirement for optimizing the therapeutic use of stem cells.”

Further information
Original publication:
Rieger MA, Hoppe PS, Smejkal BM, Eitelhuber AC & Schroeder T (2009): Hematopoietic cytokines can instruct lineage choice. Science 325:217-218
Directed by Professor Magdalena Götz, the Institute of Stem Cell Research at Helmholtz Zentrum München combines research on stem cells of the nervous system, the hematopoietic system and of the endoderm. Especially in view of clinical applications, the objective of the Institute is to elucidate the underlying mechanisms for the specification of stem cells in order to utilize these in a targeted manner to repair damaged cells.

Further information...

Helmholtz Zentrum München is the German Research Center for Environmental Health. As leading center oriented toward Environmental Health, it focuses on chronic and complex diseases which develop from the interaction of environmental factors and individual genetic disposition. Helmholtz Zentrum München has around 1680 staff members. The head office of the center is located in Neuherberg to the north of Munich on a 50-hectare research campus. Helmholtz Zentrum München belongs to the Helmholtz Association, Germany’s largest research organization, a community of 16 scientific-technical and medical-biological research centers with a total of 26,500 staff members.

Editor
Sven Winkler, Helmholtz Zentrum München – German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany. Phone: +49(0)89-3187-3946. Fax +49(0)89-3187-3324, email: presse@helmholtz-muenchen.de

Sven Winkler | EurekAlert!
Further information:
http://www.helmholtz-muenchen.de

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>