Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Environmental factors instruct lineage choice of blood progenitor cells

17.07.2009
The research team led by Dr. Timm Schroeder, stem cell researcher at Helmholtz Zentrum München, has developed a new bioimaging method for observing the differentiation of hematopoietic progenitor cells (HPC) at the single-cell level.

With this method the researchers were able to prove for the first time that not only cell-intrinsic mechanisms, but also external environmental factors such as growth factors can control HPC lineage choice directly.

The findings, published in the current issue of the prestigious journal Science, provide an essential building block for understanding the molecular mechanisms of hematopoiesis and are an important prerequisite for optimizing therapeutic stem cell applications.

For decades scientists from various disciplines have discussed to what respective extent genetic predisposition and environmental factors influence human development. Likewise, the same ‘nature vs. nurture’ issue is debated by hematologists and stem cell researchers: Is multipotent progenitor cell differentiation influenced solely by cell-intrinsic mechanisms or is it also influenced by the environment of the cell? What role do growth factors such as cytokines play? Do they influence HPC lineage choice directly or do they merely regulate the survival of the cell after the lineage choice has been made? Despite the immense importance of cytokines for day-to-day clinical research – and not least their far-reaching significance commercially - this issue has been one of the key unknown factors in the stem cell biology of blood.

"This is simply because until now we did not have the suitable technology to observe the processes of cell differentiation and to measure them quantitatively," explained Dr. Timm Schroeder, research group leader at the Institute of Stem Cell Research of Helmholtz Zentrum München. "We didn’t know exactly what happens during this time span," Dr. Schroeder said. “That is why until now we could not prove what role cytokines play.”

With the new bioimaging techniques developed by Dr. Schroeder’s team, progenitor cells could be observed for a longer period and on the single-cell level. Depending on the kind of cytokines present, after a few days the HPC cultures contained only one cell type. The question remained unanswered whether this was a consequence of direct cytokine regulation or merely the result of sorting out “erroneously differentiated” cells by cell death. Using the new bioimaging techniques for continuous single-cell observation, Dr. Michael Rieger and students in Dr. Schroeder’s research group showed for the first time that no cell death could be detected during the entire cell differentiation process. This proves unambiguously that HPC lineage choices can be steered by external environmental factors such as in this case by cytokines. The hematopoietic progenitor cells are “instructed” by cytokines.

"These findings confirm that signaling pathways that are activated by cytokine receptors influence the lineage choices of the cells,” Dr. Schroeder said. “The new method offers us the unique chance to observe the effect of all the molecules involved in the differentiation process separately and to better understand their role. This is an important requirement for optimizing the therapeutic use of stem cells.”

Further information
Original publication:
Rieger MA, Hoppe PS, Smejkal BM, Eitelhuber AC & Schroeder T (2009): Hematopoietic cytokines can instruct lineage choice. Science 325:217-218
Directed by Professor Magdalena Götz, the Institute of Stem Cell Research at Helmholtz Zentrum München combines research on stem cells of the nervous system, the hematopoietic system and of the endoderm. Especially in view of clinical applications, the objective of the Institute is to elucidate the underlying mechanisms for the specification of stem cells in order to utilize these in a targeted manner to repair damaged cells.

Further information...

Helmholtz Zentrum München is the German Research Center for Environmental Health. As leading center oriented toward Environmental Health, it focuses on chronic and complex diseases which develop from the interaction of environmental factors and individual genetic disposition. Helmholtz Zentrum München has around 1680 staff members. The head office of the center is located in Neuherberg to the north of Munich on a 50-hectare research campus. Helmholtz Zentrum München belongs to the Helmholtz Association, Germany’s largest research organization, a community of 16 scientific-technical and medical-biological research centers with a total of 26,500 staff members.

Editor
Sven Winkler, Helmholtz Zentrum München – German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany. Phone: +49(0)89-3187-3946. Fax +49(0)89-3187-3324, email: presse@helmholtz-muenchen.de

Sven Winkler | EurekAlert!
Further information:
http://www.helmholtz-muenchen.de

More articles from Life Sciences:

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht Identified the component that allows a lethal bacteria to spread resistance to antibiotics
27.07.2017 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>