Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Environment drives genetics in 'Evolution Canyon'; discovery sheds light on climate change

12.12.2013
Virginia Bioinformatics Institute researchers find climate differences drive gene changes

Interplay between genes and the environment has been pondered at least since the phrase "nature versus nurture" was coined in the mid-1800s.

But until the arrival of modern genomic sequencing tools, it was hard to measure the extent that the environment had on a species' genetic makeup.

Now, researchers with the Virginia Bioinformatics Institute at Virginia Tech studying fruit flies that live on opposite slopes of a unique natural environment known as "Evolution Canyon" show that even with migration, cross-breeding, and sometimes the obliteration of the populations, the driving force in the gene pool is largely the environment.

The discovery in this week's Proceedings of the National Academy of Sciences shows that the animals genetically adapt depending on whether they live on the drier, hotter side of the canyon, or the more humid, cooler side.

"Despite complicating factors, such as likely gene flow between the two populations and changing demographics, the difference in the microclimate in this canyon apparently is so pervasive that it is sufficient to drive the genetic differences," said Pawel Michalak, an associate professor at the Virginia Bioinformatics Institute. "We don't have many examples of rapid environmental adaptation to stressful conditions from the field. We can simulate such conditions in a lab, but it is valuable to observe this actually happening in a natural system."

The two slopes of Evolution Canyon, which is located at Mount Carmel, Israel, are little more than two football fields apart at their bases, but the south-facing slope is tropical and may receive eight times as much sun, while the north-facing slope is more like a European forest.

Knowledge that climatic and environmental factors seem to exert a significant effect on the fruit-fly genome in spite of migration or repopulations adds to current understanding of the biodiversity, resilience, and ability of a species to adapt to rapid climate change.

The native fruit fly in question — Drosophila melanogaster — is a well-studied laboratory animal and the source of the world's knowledge of how genetic information is packaged in chromosomes.

More than 65 percent of disease-causing genes in humans are believed to have functional counterparts in the fly, including many genes involved in certain cancers, Alzheimer's and Parkinson's diseases, heart disease, and other medical conditions.

Researchers used a technique known as whole genome sequencing to characterize the complete set of DNA in the total population of the fruit flies, noting differences in the genetic makeup between the populations on the opposing slopes.

The international team, which included scientists from the Institute of Evolution at Haifa University, the University of British Columbia in Vancouver, and Memorial Sloan-Kettering Cancer Center in New York, discovered 572 genes were significantly different in frequency between the populations, corroborating previous observations of differences in heat tolerance, life history, and mating behavior.

In addition, researchers discovered that genetic changes were accumulating in chromosomal "islands" in the north-facing-slope flies, suggesting adaptive gene mutations would sweep through the population, given time.

Migration of flies between the slopes was confirmed by capturing and marking them with florescence.

"Although we were not correlating genetic change with climate change, we were looking at heat-stress effects, which gives us an indirect understanding relevant to global climate changes," Michalak said. "We need some good indicators of genomic changes induced by climate changes. People have ways to cope unlike those of other organisms, but stress-resistance mechanisms are well-conserved in nature. The basic question of how organisms adapt to stressful environments is going to be more important in the years ahead. It affects us as a whole."

The research confirms that natural selection — the process in nature where organisms genetically adapt to their surroundings — is a powerful influence in the canyon.

"It is nice to see the molecular work finally completed, and that the molecular signal confirms the phenotypic data: There is divergence between the two slopes," said Marta L. Wayne, a professor of biology at the University of Florida and a member of the UF Genetics Institute, who was not involved in the research. "This is interesting because the slopes are close enough that we know animals travel between them, yet selection is so strong that there are differences between animals on the two slopes. This is really strong natural selection."

The research was supported by the United States-Israel Binational Science Foundation.

John Pastor | EurekAlert!
Further information:
http://www.vt.edu

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>