Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Entomologists Work Toward Mitigating the Spread of Lyme Disease by ...

15.12.2008
... Unlocking Mechanisms Controlling the Black-legged Tick's Salivary Glands

In research that could mitigate the spread of Lyme disease, Kansas State University entomologists are looking for answers in tick saliva.

Yoonseong Park, associate professor of entomology at K-State, is working with Ladislav Simo, a research associate, to understand what controls the salivary gland system in black-legged ticks.

"My research program has focused on how the tick's neurological system is connected to the salivary system," Park said. "We have identified neuropeptides involved in controlling salivary gland activity."

Working in collaboration with K-State's Functional Genomics Consortium, Park and Simo have used the group's MALDI-TOF machine. Park said it is one of the most modern protein analysis machines available, and with it they have identified a number of neuropeptides for the first time. Understanding these neuropepties could help mitigate the spread of Lyme disease, Park said.

Also called deer ticks, black-legged ticks spread Lyme disease. Park said it affects between 250,000 and 350,000 people in the United States each year and also is a big problem in Europe. The bacteria that cause Lyme disease are transmitted through the tick's saliva when it is feeding on a host.

A tick's meal lasts about a week, Park said. During that time, neuropeptides control the salivary gland to keep the feeding process going. That means secreting anticoagulants to make the host's blood drinkable and secreting anti-immunoglobulins that inhibit the host's ability to resist the tick. Park said that the tick's salivary system is continually adjusting these secretions as needed.

The salivary system also plays a role in helping the tick survive when a host isn't available. Park said the tick uses its salivary gland to control the suction of water out of the atmosphere.

"Eventually, our study can be a tool for disrupting the disease transmission," Park said. "We might be able to inhibit the tick's salivary secretion mechanism."

He said that his research with Simo also will help scientists who are trying to understand such mechanisms in other tick species, like the species that spreads Rocky Mountain Spotted Fever.

Park said that his lab at K-State is one of few labs in the country studying the neuropeptides' role in the salivary system. Their research will be published in an upcoming issue of Cell and Tissue Research.

Park and Simo also are collaborating with Purdue University researchers who are sequencing the black-legged tick's genome. Park said that they have identified the genes responsible for encoding the neuropeptides.

Their research is being done with support from K-State's Center of Biomedical Research Excellence. Funded by the National Institutes of Health, the center provides resources to junior basic researchers and clinician-scientists at K-State and across Kansas.

Park's previous research through the center involved investigating the excretion processes in Anopheles gambaie, the mosquito that spreads malaria.

Erinn Barcomb-Peterson | Newswise Science News
Further information:
http://www.k-state.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>