Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Entomologists Work Toward Mitigating the Spread of Lyme Disease by ...

15.12.2008
... Unlocking Mechanisms Controlling the Black-legged Tick's Salivary Glands

In research that could mitigate the spread of Lyme disease, Kansas State University entomologists are looking for answers in tick saliva.

Yoonseong Park, associate professor of entomology at K-State, is working with Ladislav Simo, a research associate, to understand what controls the salivary gland system in black-legged ticks.

"My research program has focused on how the tick's neurological system is connected to the salivary system," Park said. "We have identified neuropeptides involved in controlling salivary gland activity."

Working in collaboration with K-State's Functional Genomics Consortium, Park and Simo have used the group's MALDI-TOF machine. Park said it is one of the most modern protein analysis machines available, and with it they have identified a number of neuropeptides for the first time. Understanding these neuropepties could help mitigate the spread of Lyme disease, Park said.

Also called deer ticks, black-legged ticks spread Lyme disease. Park said it affects between 250,000 and 350,000 people in the United States each year and also is a big problem in Europe. The bacteria that cause Lyme disease are transmitted through the tick's saliva when it is feeding on a host.

A tick's meal lasts about a week, Park said. During that time, neuropeptides control the salivary gland to keep the feeding process going. That means secreting anticoagulants to make the host's blood drinkable and secreting anti-immunoglobulins that inhibit the host's ability to resist the tick. Park said that the tick's salivary system is continually adjusting these secretions as needed.

The salivary system also plays a role in helping the tick survive when a host isn't available. Park said the tick uses its salivary gland to control the suction of water out of the atmosphere.

"Eventually, our study can be a tool for disrupting the disease transmission," Park said. "We might be able to inhibit the tick's salivary secretion mechanism."

He said that his research with Simo also will help scientists who are trying to understand such mechanisms in other tick species, like the species that spreads Rocky Mountain Spotted Fever.

Park said that his lab at K-State is one of few labs in the country studying the neuropeptides' role in the salivary system. Their research will be published in an upcoming issue of Cell and Tissue Research.

Park and Simo also are collaborating with Purdue University researchers who are sequencing the black-legged tick's genome. Park said that they have identified the genes responsible for encoding the neuropeptides.

Their research is being done with support from K-State's Center of Biomedical Research Excellence. Funded by the National Institutes of Health, the center provides resources to junior basic researchers and clinician-scientists at K-State and across Kansas.

Park's previous research through the center involved investigating the excretion processes in Anopheles gambaie, the mosquito that spreads malaria.

Erinn Barcomb-Peterson | Newswise Science News
Further information:
http://www.k-state.edu

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>