Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enriched environment improves wound healing in rats

13.05.2009
Access to nest-building materials speeds healing and alters gene expression in brain

Improving the environment in which rats are reared can significantly strengthen the physiological process of wound healing, according to a report in the open-access journal PLoS ONE.

Researchers from the Benson-Henry Institute for Mind Body Medicine at Massachusetts General Hospital (MGH) and Shriners Burns Hospital found that giving rats living in isolation the opportunity to build nests led to faster and more complete healing of burn injuries than was seen in isolation-reared rats without nest-building materials. The study also found evidence that this effect was associated with altered gene expression in stress-associated structures in the brain.

"These findings are consistent with other animal studies that show how stress and social deprivation reduce physical well being, but our study is novel in showing that the detrimental effects on physical health can be reversed by environmental stimulation" says John B. Levine, MD, PhD, of the MGH Department of Psychiatry, senior author of the paper.

Previous research indicated that a more stimulating environment improves maternal behavior in rats – probably through the effects of oxytocin, a hormone involved with maternal attachment and bonding – and that stress reduces wound healing in both animals and humans. An earlier study by members of the MGH/Shriners research team found that rats raised in isolation had both poor wound healing and changes in the activity of stress-associated brain structures. The current study was designed to examine whether environmental enrichment can reduce the impact of stress on wound healing and to investigate associated changes in brain activity and behavior.

Young rats that had just been weaned were placed either in cages shared with other rats or into isolation cages. Along with standard bedding materials, some of the isolated animals also received small squares of cotton called Nestlets that they would tear up and arrange into nests. The nesting materials were replaced twice a week, and each time the rats built themselves new nests. An experiment designed to test wound healing found significant difference among these groups. Four weeks after a burn injury was administered under anesthesia, 92 percent of the group-reared rats had healed well, compared with only 12 percent of the isolation-reared rats without nesting materials. But among the isolation-reared rats given nesting materials, 64 percent were determined to have healed well.

Another experiment showed that a daily dose of oxytocin had the same effect on wound healing as did access to nest-building materials. A third experiment showed that the opportunity to build nests reduced the hyperactive behavior typically seen in isolation-reared rats and also had effects in the hippocampus – a brain structure known to be key to the stress network – increasing the expression of genes previously shown to be underexpressed in isolation-reared animals.

"The fact that giving these animals a behavioral intervention changed not only their behavior but also their physical health raises important mind-body questions that require further investigation in humans as well as animal models," says Gregory Fricchione, MD, director of the Benson-Henry Institute and co-corresponding author of the PLoS ONE report. "It sets the stage for further studies to identify the mechanism accounting for this phenomenon."

Herbert Benson, MD, the founder and director emeritus of the Benson-Henry Institute and a co-author of the PLoS ONE report adds, "We know that the behavioral techniques we have been using to help patients for decades can improve health in several ways, and this study is adding to our understanding of exactly how that happens. Learning more about the mechanisms underlying these effects can only add to our ability to help patients cope with a wide array of health challenges."

Levine is an assistant clinical professor of Psychiatry and Fricchione is a professor of Psychiatry at Harvard Medical School. Levine is also director of Child and Adolescent Psychiatry at Saint Francis Hospital in Hartford, Conn. Additional co-authors of the PLOS One study are Antonia Vitalo, Jonathan Fricchione, Monica Casali, Yevgeny Berdichevsky, Francois Berthiaume, and Martin Yarmush of the MGH Center for Engineering in Medicine and Shriners Burns Hospital; Elizabeth Hoge, MGH Psychiatry; and Scott Rauch, McLean Hospital. The study received funding from the John Henry Foundation, the Benson-Henry Institute for Mind Body Medicine at Massachusetts General Hospital, and the Medical Research Programs of the Shriners Burns Hospital – Boston.

Massachusetts General Hospital, established in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $500 million and major research centers in AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, human genetics, medical imaging, neurodegenerative disorders, regenerative medicine, systems biology, transplantation biology and photomedicine.

Sue McGreevey | EurekAlert!
Further information:
http://www.mgh.harvard.edu

More articles from Life Sciences:

nachricht Rutgers scientists discover 'Legos of life'
23.01.2018 | Rutgers University

nachricht Researchers identify a protein that keeps metastatic breast cancer cells dormant
23.01.2018 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>