Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enhancing RNA interference

25.06.2013
Helping RNA escape from cells’ recycling process could make it easier to shut off disease-causing genes.

Nanoparticles that deliver short strands of RNA offer a way to treat cancer and other diseases by shutting off malfunctioning genes. Although this approach has shown some promise, scientists are still not sure exactly what happens to the nanoparticles once they get inside their target cells.

A new study from MIT sheds light on the nanoparticles’ fate and suggests new ways to maximize delivery of the RNA strands they are carrying, known as short interfering RNA (siRNA).

“We’ve been able to develop nanoparticles that can deliver payloads into cells, but we didn’t really understand how they do it,” says Daniel Anderson, the Samuel Goldblith Associate Professor of Chemical Engineering at MIT. “Once you know how it works, there’s potential that you can tinker with the system and make it work better.”

Anderson, a member of MIT’s Koch Institute for Integrative Cancer Research and MIT’s Institute for Medical Engineering and Science, is the leader of a research team that set out to examine how the nanoparticles and their drug payloads are processed at a cellular and subcellular level. Their findings appear in the June 23 issue of Nature Biotechnology. Robert Langer, the David H. Koch Institute Professor at MIT, is also an author of the paper.

One RNA-delivery approach that has shown particular promise is packaging the strands with a lipidlike material; similar particles are now in clinical development for liver cancer and other diseases.

Through a process called RNA interference, siRNA targets messenger RNA (mRNA), which carries genetic instructions from a cell’s DNA to the rest of the cell. When siRNA binds to mRNA, the message carried by that mRNA is destroyed. Exploiting that process could allow scientists to turn off genes that allow cancer cells to grow unchecked.

Scientists already knew that siRNA-carrying nanoparticles enter cells through a process, called endocytosis, by which cells engulf large molecules. The MIT team found that once the nanoparticles enter cells they become trapped in bubbles known as endocytic vesicles. This prevents most of the siRNA from reaching its target mRNA, which is located in the cell’s cytosol (the main body of the cell).

This happens even with the most effective siRNA delivery materials, suggesting that there is a lot of room to improve the delivery rate, Anderson says.

“We believe that these particles can be made more efficient. They’re already very efficient, to the point where micrograms of drug per kilogram of animal can work, but these types of studies give us clues as to how to improve performance,” Anderson says.

Molecular traffic jam

The researchers found that once cells absorb the lipid-RNA nanoparticles, they are broken down within about an hour and excreted from the cells.

They also identified a protein called Niemann Pick type C1 (NPC1) as one of the major factors in the nanoparticle-recycling process. Without this protein, the particles could not be excreted from the cells, giving the siRNA more time to reach its targets. “In the absence of the NPC1, there’s a traffic jam, and siRNA gets more time to escape from that traffic jam because there is a backlog,” says Gaurav Sahay, an MIT postdoc and lead author of the Nature Biotechnology paper.

In studies of cells grown in the lab without NPC1, the researchers found that the level of gene silencing achieved with RNA interference was 10 to 15 times greater than that in normal cells.

Lack of NPC1 also causes a rare lysosomal storage disorder that is usually fatal in childhood. The findings suggest that patients with this disorder might benefit greatly from potential RNA interference therapy delivered by this type of nanoparticle, the researchers say. They are now planning to study the effects of knocking out the NPC1 gene on siRNA delivery in animals, with an eye toward testing possible siRNA treatments for the disorder.

The researchers are also looking for other factors involved in nanoparticle recycling that could make good targets for possibly slowing down or blocking the recycling process, which they believe could help make RNA interference drugs much more potent. Possible ways to do that could include giving a drug that interferes with nanoparticle recycling, or creating nanoparticle materials that can more effectively evade the recycling process.

The research was funded by Alnylam Pharmaceuticals and the National Heart, Lung, and Blood Institute.

Written by: Anne Trafton, MIT News Office

Sarah McDonnell | EurekAlert!
Further information:
http://www.mit.edu

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>