Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineers create intelligent molecules that seek-and-destroy diseased cells

16.02.2009
Current treatments for diseases like cancer typically destroy nasty malignant cells, while also hammering the healthy ones. Using new advances in synthetic biology, researchers are designing molecules intelligent enough to recognize diseased cells, leaving the healthy cells alone.

"We basically design molecules that actually go into the cell and do an analysis of the cellular state before delivering the therapeutic punch," said Christina Smolke, assistant professor of bioengineering who joined Stanford University in January.

"When you look at a diseased cell (e.g. a cancer cell) and compare it to a normal cell, you can identify biomarkers—changes in the abundance of proteins or other biomolecule levels—in the diseased cell," Smolke said. Her research team has designed molecules that trigger cell death only in the presence of such markers. "A lot of the trick with developing effective therapeutics is the ability to target and localize the therapeutic effect, while minimizing nonspecific side effects," she said.

Smolke will present the latest applications of her lab's work at the American Association for the Advancement of Science (AAAS) meeting in Chicago on Friday, Feb. 13.

These designer molecules are created through RNA-based technologies that Smolke's lab developed at the California Institute of Technology. A recent example of these systems, developed with postdoctoral researcher Maung Nyan Win (who joined Smolke in her move to Stanford), was described in a paper published in the Oct. 17, 2008, issue of Science.

"We do our design on the computer and pick out sequences that are predicted to behave the way we like," Smolke said. When researchers generate these sequences inside the operating system of a cell, they reprogram the cell and change its function. "Building these molecules out of RNA gives us a very programmable and therefore powerful design substrate," she said.

Smolke's team focuses on well-researched model systems in breast, prostate and brain cancers, including immunotherapy applications based on reprogramming human immune response to different diseases. The researchers work directly with clinicians at the City of Hope Cancer Center (a National Cancer Institute designated Comprehensive Cancer Center in Duarte, Calif.) that have ongoing immunotherapy trials for treating glioma, a severe type of brain cancer.

"Our goal is to make more effective therapies by taking advantage of the natural capabilities of our immune system and introducing slight modifications in cases where it is not doing what we would like it to do," Smolke said. She hopes to translate her technologies into intelligent cellular therapeutics for glioma patients in the next five years. "That's a very optimistic view," she said. "But so far things have been moving quickly."

The broader implications for using intelligent molecules in immunotherapy and gene therapy seem limitless. Researchers and doctors can use this approach by targeting a specific cellular function or behavior they want to control in a particular disease. Then they can identify signals indicative of viral infection, host immune response, or drugs the clinician is administering and engineer the molecules to change the cell function in response to those signals.

"In a lot of therapies, you have nonspecific side effects or you're balancing the desired effect of the therapy on diseased cells or infection with its undesired effects on the entire host," Smolke said. Current chemotherapy treatments for cancer, and even many gene therapies, have drastic and debilitating consequences for patients. The designer molecules provide a whole new targeting accuracy that should mitigate these side effects.

"This is all very front-end work," Smolke said. "We've just started to move these foundational technologies into these sorts of downstream medical applications, and so there is a lot to learn … which makes it that much more exciting."

Smolke's work is funded by the National Institutes of Health, National Science Foundation, Department of Defense and the Beckman Foundation.

At the AAAS meeting, Smolke will present her work alongside Drew Endy, assistant professor of bioengineering at Stanford University, as part of the Synthetic Life symposium.

Endy, who joined Stanford last fall, will discuss the societal and safety implications of molecular synthesis technology. This includes the consequences of researchers moving toward building registries for standard biological parts and the education aspects of iGEM—an international forum where student teams compete to design and assemble engineered machines using advanced genetic components and technologies—which has led to the training of a new generation of scientists and bioengineers. Stanford will be hosting its first iGEM team this year. Endy will also discuss his efforts, along with colleagues, to start fabrication facilities focused on churning out libraries of open-access biological parts and the resulting implications for biological engineering.

Louis Bergeron | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>