Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineering wheat arabinoxylan for new applications

05.05.2010
Arabinoxylan, the major dietary fibre component of wheat bran, is important both from the technological and nutritional point of view. New enzymatic technologies were developed in the HEALTHGRAIN project to partly and selectively degrade arabinoxylan. The results offer potential for a new soluble fibre ingredient based on wheat bran.

The health benefits of cereal fibre, in particular in the prevention of lifestyle diseases such as diabetes, obesity, cardiovascular diseases, and cancer, are today generally recognized. Authoritative dietetic associations all around the world recommend consumption of cereal based products containing bran and fibre over products prepared from refined cereals. Arabinoxylan is the major dietary fibre component of both wheat and rye. It thus offers many possibilities for new ingredient manufacture.

Xylanase enzymes offer an efficient and specific tool to solubilise arabinoxylan polymers, and further to produce short-chain arabinoxylan oligosaccharides (AXOs). New xylanase enzymes were identified and characterized to have specific activities, and also to operate in the high temperature conditions during baking. One approach was to enzymatically solubilize AXOs in situ during the breadmaking process. An enzymatic process for AXOs production has already been developed (www.fugeia.be). Furthermore, extensive ball milling was shown to degrade arabinoxylans, offering tentative new possibilities for AXOs design.

A major feature of AXOs is that, in the colon, they are fermented to short chain fatty acids in general and butyric acid in particular. Butyric acid is important for the large intestinal mucosa cells. Arabinoxylan and AXOs are also known to be bifidogenic, ie they promote the growth of Bifidobacterium in the gut. The potential antioxidant power of AXOS deserves further studies.

The EU Integrated Project HEALTHGRAIN: The HEALTHGRAIN project has substantially strengthened the scientific basis for a new generation of cereal based products with enhanced health benefits. The project also has formed a network of research organizations, industries and organizations communicating to consumers that will continue as the HEALTHGRAIN Forum. It has been coordinated by Academy Professor Kaisa Poutanen from VTT Technical Research Centre of Finland. Results of the project will be presented in the HEALTHGRAIN Conference on May 5-7 in Lund, Sweden: www.healthgrain.org

Katholieke Universiteit Leuven: The KU Leuven carries out fundamental and applied research in all academic disciplines with a clear international orientation. Our annual research expenditures are around 230 million euro (exact sciences account for 44%, biomedical sciences for 30%, humanities for 19%, and interfacultary institutes for 7%); our scientific staff counts over 5,300 researchers, including 1,800 senior researchers, 10% are international scholars, up to 30% in the most advanced research domains. Applied research is supported by the well-experienced K.U.Leuven Research & Development, one of the most prominent technology transfer offices in Europe. For a short overview of main facts & figures: http://www.kuleuven.be/english/about.

Key references:

Swennen, K, Courtin, CM, Lindemans, GCJE, Delcour, JA, Large scale production and charac-terisation of wheat bran arabinoxylooligosaccharides, 2006, Journal of the Science of Food and Agriculture, 86, 1722-1731.

Eeckhaut, V, Van Immerseel, F, Dewulf, J, Pasmans, F, Haesebrouck, F, Ducatelle, R, Courtin, CM, Delcour, JA, Broekaert, WF, Arabinoxylooligosaccharides from wheat bran inhibit Salmonella colonization in broiler chickens, 2008, Poultry Science, 87, 2329-2334.

Courtin, CM, Swennen, K, Verjans, P, Delcour, JA, Stability of arabinoxylo-oligosaccharides, xylooligosaccharides and fructooligosaccharides, 2009, Food Chemistry, 112, 831-837.

Further information:

Jan A. Delcour or Christophe M. Courtin, Katholieke Universiteit Leuven
Kasteelpark Arenberg 20, 3001 Heverlee, Belgium
Email: jan.delcour@biw.kuleuven.be; christophe.courtin@biw.kuleuven.be,
Phone: +32 16 321634; Fax: +32 16 321997

Jan A. Delcour | EurekAlert!
Further information:
http://www.kuleuven.be/english/about

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>