Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineering wheat arabinoxylan for new applications

05.05.2010
Arabinoxylan, the major dietary fibre component of wheat bran, is important both from the technological and nutritional point of view. New enzymatic technologies were developed in the HEALTHGRAIN project to partly and selectively degrade arabinoxylan. The results offer potential for a new soluble fibre ingredient based on wheat bran.

The health benefits of cereal fibre, in particular in the prevention of lifestyle diseases such as diabetes, obesity, cardiovascular diseases, and cancer, are today generally recognized. Authoritative dietetic associations all around the world recommend consumption of cereal based products containing bran and fibre over products prepared from refined cereals. Arabinoxylan is the major dietary fibre component of both wheat and rye. It thus offers many possibilities for new ingredient manufacture.

Xylanase enzymes offer an efficient and specific tool to solubilise arabinoxylan polymers, and further to produce short-chain arabinoxylan oligosaccharides (AXOs). New xylanase enzymes were identified and characterized to have specific activities, and also to operate in the high temperature conditions during baking. One approach was to enzymatically solubilize AXOs in situ during the breadmaking process. An enzymatic process for AXOs production has already been developed (www.fugeia.be). Furthermore, extensive ball milling was shown to degrade arabinoxylans, offering tentative new possibilities for AXOs design.

A major feature of AXOs is that, in the colon, they are fermented to short chain fatty acids in general and butyric acid in particular. Butyric acid is important for the large intestinal mucosa cells. Arabinoxylan and AXOs are also known to be bifidogenic, ie they promote the growth of Bifidobacterium in the gut. The potential antioxidant power of AXOS deserves further studies.

The EU Integrated Project HEALTHGRAIN: The HEALTHGRAIN project has substantially strengthened the scientific basis for a new generation of cereal based products with enhanced health benefits. The project also has formed a network of research organizations, industries and organizations communicating to consumers that will continue as the HEALTHGRAIN Forum. It has been coordinated by Academy Professor Kaisa Poutanen from VTT Technical Research Centre of Finland. Results of the project will be presented in the HEALTHGRAIN Conference on May 5-7 in Lund, Sweden: www.healthgrain.org

Katholieke Universiteit Leuven: The KU Leuven carries out fundamental and applied research in all academic disciplines with a clear international orientation. Our annual research expenditures are around 230 million euro (exact sciences account for 44%, biomedical sciences for 30%, humanities for 19%, and interfacultary institutes for 7%); our scientific staff counts over 5,300 researchers, including 1,800 senior researchers, 10% are international scholars, up to 30% in the most advanced research domains. Applied research is supported by the well-experienced K.U.Leuven Research & Development, one of the most prominent technology transfer offices in Europe. For a short overview of main facts & figures: http://www.kuleuven.be/english/about.

Key references:

Swennen, K, Courtin, CM, Lindemans, GCJE, Delcour, JA, Large scale production and charac-terisation of wheat bran arabinoxylooligosaccharides, 2006, Journal of the Science of Food and Agriculture, 86, 1722-1731.

Eeckhaut, V, Van Immerseel, F, Dewulf, J, Pasmans, F, Haesebrouck, F, Ducatelle, R, Courtin, CM, Delcour, JA, Broekaert, WF, Arabinoxylooligosaccharides from wheat bran inhibit Salmonella colonization in broiler chickens, 2008, Poultry Science, 87, 2329-2334.

Courtin, CM, Swennen, K, Verjans, P, Delcour, JA, Stability of arabinoxylo-oligosaccharides, xylooligosaccharides and fructooligosaccharides, 2009, Food Chemistry, 112, 831-837.

Further information:

Jan A. Delcour or Christophe M. Courtin, Katholieke Universiteit Leuven
Kasteelpark Arenberg 20, 3001 Heverlee, Belgium
Email: jan.delcour@biw.kuleuven.be; christophe.courtin@biw.kuleuven.be,
Phone: +32 16 321634; Fax: +32 16 321997

Jan A. Delcour | EurekAlert!
Further information:
http://www.kuleuven.be/english/about

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>