Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineering wheat arabinoxylan for new applications

05.05.2010
Arabinoxylan, the major dietary fibre component of wheat bran, is important both from the technological and nutritional point of view. New enzymatic technologies were developed in the HEALTHGRAIN project to partly and selectively degrade arabinoxylan. The results offer potential for a new soluble fibre ingredient based on wheat bran.

The health benefits of cereal fibre, in particular in the prevention of lifestyle diseases such as diabetes, obesity, cardiovascular diseases, and cancer, are today generally recognized. Authoritative dietetic associations all around the world recommend consumption of cereal based products containing bran and fibre over products prepared from refined cereals. Arabinoxylan is the major dietary fibre component of both wheat and rye. It thus offers many possibilities for new ingredient manufacture.

Xylanase enzymes offer an efficient and specific tool to solubilise arabinoxylan polymers, and further to produce short-chain arabinoxylan oligosaccharides (AXOs). New xylanase enzymes were identified and characterized to have specific activities, and also to operate in the high temperature conditions during baking. One approach was to enzymatically solubilize AXOs in situ during the breadmaking process. An enzymatic process for AXOs production has already been developed (www.fugeia.be). Furthermore, extensive ball milling was shown to degrade arabinoxylans, offering tentative new possibilities for AXOs design.

A major feature of AXOs is that, in the colon, they are fermented to short chain fatty acids in general and butyric acid in particular. Butyric acid is important for the large intestinal mucosa cells. Arabinoxylan and AXOs are also known to be bifidogenic, ie they promote the growth of Bifidobacterium in the gut. The potential antioxidant power of AXOS deserves further studies.

The EU Integrated Project HEALTHGRAIN: The HEALTHGRAIN project has substantially strengthened the scientific basis for a new generation of cereal based products with enhanced health benefits. The project also has formed a network of research organizations, industries and organizations communicating to consumers that will continue as the HEALTHGRAIN Forum. It has been coordinated by Academy Professor Kaisa Poutanen from VTT Technical Research Centre of Finland. Results of the project will be presented in the HEALTHGRAIN Conference on May 5-7 in Lund, Sweden: www.healthgrain.org

Katholieke Universiteit Leuven: The KU Leuven carries out fundamental and applied research in all academic disciplines with a clear international orientation. Our annual research expenditures are around 230 million euro (exact sciences account for 44%, biomedical sciences for 30%, humanities for 19%, and interfacultary institutes for 7%); our scientific staff counts over 5,300 researchers, including 1,800 senior researchers, 10% are international scholars, up to 30% in the most advanced research domains. Applied research is supported by the well-experienced K.U.Leuven Research & Development, one of the most prominent technology transfer offices in Europe. For a short overview of main facts & figures: http://www.kuleuven.be/english/about.

Key references:

Swennen, K, Courtin, CM, Lindemans, GCJE, Delcour, JA, Large scale production and charac-terisation of wheat bran arabinoxylooligosaccharides, 2006, Journal of the Science of Food and Agriculture, 86, 1722-1731.

Eeckhaut, V, Van Immerseel, F, Dewulf, J, Pasmans, F, Haesebrouck, F, Ducatelle, R, Courtin, CM, Delcour, JA, Broekaert, WF, Arabinoxylooligosaccharides from wheat bran inhibit Salmonella colonization in broiler chickens, 2008, Poultry Science, 87, 2329-2334.

Courtin, CM, Swennen, K, Verjans, P, Delcour, JA, Stability of arabinoxylo-oligosaccharides, xylooligosaccharides and fructooligosaccharides, 2009, Food Chemistry, 112, 831-837.

Further information:

Jan A. Delcour or Christophe M. Courtin, Katholieke Universiteit Leuven
Kasteelpark Arenberg 20, 3001 Heverlee, Belgium
Email: jan.delcour@biw.kuleuven.be; christophe.courtin@biw.kuleuven.be,
Phone: +32 16 321634; Fax: +32 16 321997

Jan A. Delcour | EurekAlert!
Further information:
http://www.kuleuven.be/english/about

More articles from Life Sciences:

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Predicting unpredictability: Information theory offers new way to read ice cores

07.12.2016 | Earth Sciences

Sea ice hit record lows in November

07.12.2016 | Earth Sciences

New material could lead to erasable and rewriteable optical chips

07.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>