Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineering a protein to prevent brain damage from toxic agents

31.07.2014

NYU researchers advance the stability of a protein that neutralizes toxins in common pesticides and chemical weapons

Research at New York University is paving the way for a breakthrough that may prevent brain damage in civilians and military troops exposed to poisonous chemicals—particularly those in pesticides and chemical weapons.

An article in the current issue of the journal ChemBioChem outlines the advancement in detoxifying organophosphates, which are compounds commonly used in pesticides and warfare agents. The patent-pending process was developed by NYU School of Engineering Associate Professor of Chemical and Biological Engineering Jin Kim Montclare, along with Richard Bonneau, an associate professor in NYU's Department of Biology and a member of the computer science faculty at NYU's Courant Institute of Mathematical Sciences.

Their work centers on proteins called phosphotriesterases, which have the unique capability of degrading chemicals in a class known as organophosphates, which are found in everything from industrial pesticides to the sarin gas used in chemical warfare.

Organophosphates permanently bond to neurotransmitters in the brain, interfering with their ability to function and causing irreversible damage. The ability of phosphotriesterases to detoxify organophosphates has been previously documented; however, applications using the protein for this purpose have been limited by its short half-life and instability at high temperatures.

Montclare and her colleagues devised a method of re-engineering phosphotriesterases by incorporating an artificial fluorinated amino acid and computational biology. The result: a thermo-stable protein with a longer half-life that retains all the detoxification capabilities of the original version.

"Organophosphates pose tremendous danger to people and wildlife, and sadly it's not unusual for humans to come into contact with these compounds, whether through exposure to pesticide or an intentional chemical warfare attack," explained Montclare. "We've known that phosphotriesterases had the power to detoxify these nerve agents, but they were far too fragile to be used therapeutically," she said.

In a process that married computational biology and experimentation, the collaborators used Rosetta computational modeling software to identify sequences in the fluorinated phosphotriesterase protein that could be modified to increase its stability and make therapeutic applications a reality.

The possibilities for this reengineered protein are considerable. Montclare explained that in addition to therapeutic formulations, which could prevent nerve damage in the event of a gas attack or pesticide exposure and would likely be developed first for military use, the proteins could be critical when stores of toxic nerve agents need to be decommissioned.

"Oftentimes, chemical agent stockpiles are decommissioned through processes that involve treatment with heat and caustic chemical reagents for neutralization, followed by hazardous materials disposal," she said. "These proteins could accomplish that same task enzymatically, without the need for reactors and formation of dangerous byproducts."

Plans are under way to begin developing therapeutic applications for this modified phosphotriesterase, and the research team believes that its methodology—using computational biology to identify potentially beneficial modifications to proteins—could point the way to future breakthroughs in engineered proteins.

###

The initial idea for this work was broached by Michelle Zhang, a co-author of the paper and, at the time, a high school intern in Bonneau's lab. Zhang is now a student at Cornell University. Other collaborators include NYU School of Engineering doctoral students Andrew J. Olsen, Ching-Yao Yang, and Carlo Yuvienco; and P. Douglas Renfrew, a postdoctoral scholar in the Bonneau Laboratory at NYU.

Research was supported by a grant from the U.S. Army Research Office and the National Science Foundation. The full paper, Improved Stability and Half-life of Fluorinated Phosphotriesterase Using Rosetta, is available at http://onlinelibrary.wiley.com/doi/10.1002/cbic.201402062/full.

The NYU Polytechnic School of Engineering dates to 1854, when the NYU School of Civil Engineering and Architecture as well as the Brooklyn Collegiate and Polytechnic Institute (widely known as Brooklyn Poly) were founded. Their successor institutions merged in January 2014 to create a comprehensive school of education and research in engineering and applied sciences, rooted in a tradition of invention, innovation and entrepreneurship. In addition to programs at its main campus in downtown Brooklyn, it is closely connected to engineering programs in NYU Abu Dhabi and NYU Shanghai, and it operates business incubators in downtown Manhattan and Brooklyn. For more information, visit http://engineering.nyu.edu.

Kathleen Hamilton | Eurek Alert!

Further reports about: NYU Polytechnic Rosetta attack compounds damage exposure pesticides proteins toxic

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>