Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Engineering a protein to prevent brain damage from toxic agents


NYU researchers advance the stability of a protein that neutralizes toxins in common pesticides and chemical weapons

Research at New York University is paving the way for a breakthrough that may prevent brain damage in civilians and military troops exposed to poisonous chemicals—particularly those in pesticides and chemical weapons.

An article in the current issue of the journal ChemBioChem outlines the advancement in detoxifying organophosphates, which are compounds commonly used in pesticides and warfare agents. The patent-pending process was developed by NYU School of Engineering Associate Professor of Chemical and Biological Engineering Jin Kim Montclare, along with Richard Bonneau, an associate professor in NYU's Department of Biology and a member of the computer science faculty at NYU's Courant Institute of Mathematical Sciences.

Their work centers on proteins called phosphotriesterases, which have the unique capability of degrading chemicals in a class known as organophosphates, which are found in everything from industrial pesticides to the sarin gas used in chemical warfare.

Organophosphates permanently bond to neurotransmitters in the brain, interfering with their ability to function and causing irreversible damage. The ability of phosphotriesterases to detoxify organophosphates has been previously documented; however, applications using the protein for this purpose have been limited by its short half-life and instability at high temperatures.

Montclare and her colleagues devised a method of re-engineering phosphotriesterases by incorporating an artificial fluorinated amino acid and computational biology. The result: a thermo-stable protein with a longer half-life that retains all the detoxification capabilities of the original version.

"Organophosphates pose tremendous danger to people and wildlife, and sadly it's not unusual for humans to come into contact with these compounds, whether through exposure to pesticide or an intentional chemical warfare attack," explained Montclare. "We've known that phosphotriesterases had the power to detoxify these nerve agents, but they were far too fragile to be used therapeutically," she said.

In a process that married computational biology and experimentation, the collaborators used Rosetta computational modeling software to identify sequences in the fluorinated phosphotriesterase protein that could be modified to increase its stability and make therapeutic applications a reality.

The possibilities for this reengineered protein are considerable. Montclare explained that in addition to therapeutic formulations, which could prevent nerve damage in the event of a gas attack or pesticide exposure and would likely be developed first for military use, the proteins could be critical when stores of toxic nerve agents need to be decommissioned.

"Oftentimes, chemical agent stockpiles are decommissioned through processes that involve treatment with heat and caustic chemical reagents for neutralization, followed by hazardous materials disposal," she said. "These proteins could accomplish that same task enzymatically, without the need for reactors and formation of dangerous byproducts."

Plans are under way to begin developing therapeutic applications for this modified phosphotriesterase, and the research team believes that its methodology—using computational biology to identify potentially beneficial modifications to proteins—could point the way to future breakthroughs in engineered proteins.


The initial idea for this work was broached by Michelle Zhang, a co-author of the paper and, at the time, a high school intern in Bonneau's lab. Zhang is now a student at Cornell University. Other collaborators include NYU School of Engineering doctoral students Andrew J. Olsen, Ching-Yao Yang, and Carlo Yuvienco; and P. Douglas Renfrew, a postdoctoral scholar in the Bonneau Laboratory at NYU.

Research was supported by a grant from the U.S. Army Research Office and the National Science Foundation. The full paper, Improved Stability and Half-life of Fluorinated Phosphotriesterase Using Rosetta, is available at

The NYU Polytechnic School of Engineering dates to 1854, when the NYU School of Civil Engineering and Architecture as well as the Brooklyn Collegiate and Polytechnic Institute (widely known as Brooklyn Poly) were founded. Their successor institutions merged in January 2014 to create a comprehensive school of education and research in engineering and applied sciences, rooted in a tradition of invention, innovation and entrepreneurship. In addition to programs at its main campus in downtown Brooklyn, it is closely connected to engineering programs in NYU Abu Dhabi and NYU Shanghai, and it operates business incubators in downtown Manhattan and Brooklyn. For more information, visit

Kathleen Hamilton | Eurek Alert!

Further reports about: NYU Polytechnic Rosetta attack compounds damage exposure pesticides proteins toxic

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

Advanced analysis of brain structure shape may track progression to Alzheimer's disease

26.10.2016 | Health and Medicine

3-D-printed structures shrink when heated

26.10.2016 | Materials Sciences

More VideoLinks >>>