Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineered Protein-like Molecule Protects Cells Against HIV Infection

19.08.2009
With the help of the human immunodeficiency virus (HIV) and molecular engineering, researchers have designed synthetic protein-like mimics convincing enough to interrupt unwanted biological conversations between cells.

Interactions between proteins are fundamental to many biological processes, including some less-than-desirable ones like infections and tumor growth. For example, HIV and several other human viruses "” including influenza, Ebola and the severe acute respiratory syndrome (SARS) virus "” rely on interactions both among their own proteins and with host cell proteins to infect the cells.

"There's a lot of information transfer that occurs when proteins come together, and one would often like to block that information flow," says Samuel Gellman, a chemistry professor at the University of Wisconsin-Madison.

In a fundamental study of how to control protein shape, Gellman's UW-Madison research team, including former postdoctoral fellow W. Seth Horne, now at the University of Pittsburgh, and graduate student Lisa Johnson, created a set of peptide-like molecules that successfully blocked HIV infection of human cells in laboratory experiments.

By interacting with a piece of a crucial HIV protein called gp41, the synthetic molecules physically prevent the virus from infecting host cells.

The idea shows promise as a new avenue for targeting other unwanted protein interactions as well, Gellman says. The work, performed with a group led by John Moore and Min Lu at the Weill Medical College of Cornell University, is described in a paper appearing online this week (Aug. 17) in the Proceedings of the National Academy of Sciences.

Past attempts to prevent infection by selectively interfering with these interactions have had limited success, he says. Most drugs are small molecules and are not very effective at blocking most protein-protein interactions, which involve large molecular surfaces. Short snippets of proteins, or peptides, can be more effective than small molecules but are easily broken down by enzymes in the body and so require large and frequent doses that are difficult for patients to manage.

The new synthetic approach avoids these pitfalls by creating peptide-like molecules with a modified structure that degrading enzymes have trouble recognizing.

"We want to find an alternate language, an alternate way to express the information that the proteins express so that we can interfere with a conversation that one protein is having with another," Gellman explains.

Like engineers adjusting molecular blueprints, Gellman and his colleagues made structural tweaks to the backbones of their synthetic molecules to improve stability while retaining the three-dimensional shape necessary to recognize and interact with the HIV gp41 protein. The resulting molecules "” dubbed "foldamers" "” are hybrids of natural and unnatural amino acid building blocks, a combination that allows the scientists to control shape, structure and stability with much greater precision than is currently possible with natural amino acids alone.

In addition to adopting a shape that can interrupt the protein-protein dialogue, the novel foldamer has the additional advantage of being highly resistant to degradation by naturally occurring enzymes, which are stymied by the foldamer's unusual structure. This means the molecule can remain effective for a longer time and at lower doses.

Several of the synthetic foldamers showed potent antiviral activity against HIV when applied to cultured human cell lines in a dish. Although it is not clear that the foldamers themselves could ever be used as anti-HIV drugs, Gellman emphasizes, the results show that this type of approach has great potential to lead to new ways to think about designing molecules for antiviral therapies and other biomedical applications.

"You don't have to limit yourself to the building blocks that nature uses," Gellman says. "There's a huge potential here because the strategy we use is different from what the pharmaceutical and biotech industries now employ."

The study was supported by grants from the National Institutes of Health.

Jill Sakai | Newswise Science News
Further information:
http://www.wisc.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>