Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Engineered Protein-like Molecule Protects Cells Against HIV Infection

With the help of the human immunodeficiency virus (HIV) and molecular engineering, researchers have designed synthetic protein-like mimics convincing enough to interrupt unwanted biological conversations between cells.

Interactions between proteins are fundamental to many biological processes, including some less-than-desirable ones like infections and tumor growth. For example, HIV and several other human viruses "” including influenza, Ebola and the severe acute respiratory syndrome (SARS) virus "” rely on interactions both among their own proteins and with host cell proteins to infect the cells.

"There's a lot of information transfer that occurs when proteins come together, and one would often like to block that information flow," says Samuel Gellman, a chemistry professor at the University of Wisconsin-Madison.

In a fundamental study of how to control protein shape, Gellman's UW-Madison research team, including former postdoctoral fellow W. Seth Horne, now at the University of Pittsburgh, and graduate student Lisa Johnson, created a set of peptide-like molecules that successfully blocked HIV infection of human cells in laboratory experiments.

By interacting with a piece of a crucial HIV protein called gp41, the synthetic molecules physically prevent the virus from infecting host cells.

The idea shows promise as a new avenue for targeting other unwanted protein interactions as well, Gellman says. The work, performed with a group led by John Moore and Min Lu at the Weill Medical College of Cornell University, is described in a paper appearing online this week (Aug. 17) in the Proceedings of the National Academy of Sciences.

Past attempts to prevent infection by selectively interfering with these interactions have had limited success, he says. Most drugs are small molecules and are not very effective at blocking most protein-protein interactions, which involve large molecular surfaces. Short snippets of proteins, or peptides, can be more effective than small molecules but are easily broken down by enzymes in the body and so require large and frequent doses that are difficult for patients to manage.

The new synthetic approach avoids these pitfalls by creating peptide-like molecules with a modified structure that degrading enzymes have trouble recognizing.

"We want to find an alternate language, an alternate way to express the information that the proteins express so that we can interfere with a conversation that one protein is having with another," Gellman explains.

Like engineers adjusting molecular blueprints, Gellman and his colleagues made structural tweaks to the backbones of their synthetic molecules to improve stability while retaining the three-dimensional shape necessary to recognize and interact with the HIV gp41 protein. The resulting molecules "” dubbed "foldamers" "” are hybrids of natural and unnatural amino acid building blocks, a combination that allows the scientists to control shape, structure and stability with much greater precision than is currently possible with natural amino acids alone.

In addition to adopting a shape that can interrupt the protein-protein dialogue, the novel foldamer has the additional advantage of being highly resistant to degradation by naturally occurring enzymes, which are stymied by the foldamer's unusual structure. This means the molecule can remain effective for a longer time and at lower doses.

Several of the synthetic foldamers showed potent antiviral activity against HIV when applied to cultured human cell lines in a dish. Although it is not clear that the foldamers themselves could ever be used as anti-HIV drugs, Gellman emphasizes, the results show that this type of approach has great potential to lead to new ways to think about designing molecules for antiviral therapies and other biomedical applications.

"You don't have to limit yourself to the building blocks that nature uses," Gellman says. "There's a huge potential here because the strategy we use is different from what the pharmaceutical and biotech industries now employ."

The study was supported by grants from the National Institutes of Health.

Jill Sakai | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht International team discovers novel Alzheimer's disease risk gene among Icelanders
24.10.2016 | Baylor College of Medicine

nachricht New bacteria groups, and stunning diversity, discovered underground
24.10.2016 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>