Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineered pig stem cells bridge the mouse-human gap

08.06.2009
The discovery that adult skin cells can be 'reprogrammed' to behave like stem cells has been a major scientific boon, providing a way to tap the potential of embryonic stem cells without the associated ethical quandaries.

Now, in a study appearing online in JBC, researchers have created a line of such reprogrammed stem cells from adult pigs. As pigs are large animals with a physiology very similar to humans, this work provides a valuable model to study the therapeutic potential of this new "induced pluripotent stem cell" (iPS) technology.

iPS cells have already been developed from both mice and humans. Both systems will help researchers answer many biological and genetic questions about these cells, but still leave a gap before clinical applications can begin. These iPS cells cannot be tested on humans before thorough safety and efficacy trials in animal models, but the size, physiology and short lifespan of mice makes them less than ideal for these trials.

Duanqing Pei and colleagues turned to a better pre-clinical model: pigs. These large animals share a remarkably similar biology to humans, as evidenced by their already extensive contributions to medicine, such as using pig insulin to treat diabetes or pig heart valves in transplant surgery. The research group modified the current iPS protocols to successfully generate a line of stem cells from a miniature Tibetan pig (whose smaller size would make breeding and maintenance easier). A biochemical analysis revealed these cells expressed the key proteins that would classify them as 'stem cells' and had the ability to differentiate into many other types of cells.

Importantly, these pig iPS cells more closely resembled human stem cells than other animals, confirming their value in pre-clinical studies. The researchers believe porcine iPS technology is an emerging and exciting field that should progress quickly and lead to many applications.

"GENERATION OF INDUCED PLURIPOTENT STEM CELL LINES FROM TIBETAN MINIATURE PIG" by Miguel Angel Esteban, Jianyong Xu, Jiayin Yang, Meixiu Peng, Dajiang Qin, Wen Li, Zhuoxin Jiang, Jiekai Chen, Kang Deng, Mei Zhong, Jinglei Cai, Liangxue Lai and Duanqing Pei

Corresponding Author: Duanqing Pei, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, China; phone: 86-20-3229-0706; email: pei_duanqing@gibh.ac.cn

Nick Zagorski | EurekAlert!
Further information:
http://www.asbmb.org
http://www.jbc.org/cgi/content/abstract/M109.008938v2

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>