Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineered flies spill secret of seizures

12.10.2012
Scientists have observed the neurological mechanism behind temperature-dependent — febrile — seizures by genetically engineering fruit flies to harbor a mutation analogous to one that causes epileptic seizures in people. In addition to contributing the insight on epilepsy, their new study also highlights the first use of genetic engineering to swap a human genetic disease mutation into a directly analogous gene in a fly.

In a newly reported set of experiments that show the value of a particularly precise but difficult genetic engineering technique, researchers at Brown University and the University of California–Irvine have created a Drosophila fruit fly model of epilepsy to discern the mechanism by which temperature-dependent seizures happen.

The researchers used a technique called homologous recombination — a more precise and sophisticated technique than transgenic gene engineering — to give flies a disease-causing mutation that is a direct analogue of the mutation that leads to febrile epileptic seizures in humans. They observed the temperature-dependent seizures in whole flies and also observed the process in their brains. What they discovered is that the mutation leads to a breakdown in the ability of certain cells that normally inhibit brain overactivity to properly regulate their electrochemical behavior.

In addition to providing insight into the neurology of febrile seizures, said Robert Reenan, professor of biology at Brown and a co-corresponding author of the paper in the Journal of Neuroscience, the study establishes

“This is the first time anyone has introduced a human disease-causing mutation overtly into the same gene that flies possess,” Reenan said.

Engineering seizures

Homologous recombination (HR) starts with the transgenic technique of harnessing a transposable element (jumping gene) to insert a specially mutated gene just anywhere into the fly’s DNA, but then goes beyond that to ultimately place the mutated gene into exactly the same position as the natural gene on the X chromosome. HR does this by outfitting the gene to be handled by the cell’s own DNA repair mechanisms, essentially tricking the cell into putting the mutant copy into exactly the right place. Reenan’s success with the technique allowed him to win a special grant from the National Institutes of Health last year.

The new paper is a result of that grant and Reenan’s collaboration with neurobiologist Diane O’Dowd at UC–Irvine. Reenan and undergraduate Jeff Gilligan used HR to insert a mutated version of the para gene in fruit flies that is a direct parallel of the mutation in the human gene SCN1A that causes febrile seizures in people.

When the researchers placed flies in tubes and bathed the tubes in 104-degree F water, the mutant fruit flies had seizures after 20 seconds in which their legs would begin twitching followed by wing flapping, abdominal curling, and an inability to remain standing. After that, they remained motionless for as long as half an hour before recovering. Unaltered flies, meanwhile, exhibited no temperature-dependent seizures.

The researchers also found that seizure susceptibility was dose-dependent. Female flies with mutant strains of both copies of the para gene (females have two copies of the X chromosome) were the most susceptible to seizures. Those in whom only one copy of the gene was a mutant were less likely than those with two to seize, but more likely than the controls.

While the researchers at Brown compared the seizure susceptibility of whole flies, O’Dowd, lead author Lei Sun, and colleagues at Irvine studied individual fly neurons implicated in seizure activity to see how they behaved as the brains were heated. What their measurements revealed in the mutant flies were flaws in how “GABAergic” neurons take in sodium through channels in the cell membrane. Under normal circumstances, the neurons inhibit brain overactivity. But the mutants’ mishandling of sodium led them to fail electrically.

“When [O’Dowd’s team] isolates those currents due to the sodium channel, which is what’s mutated in this case, and she compares the normal animals to the disease-model animals, what happens is the mutant channels pass too much current,” Reenan said. “The channels open too easily and they take more effort to close. They open too soon and they close too late. That effect is magnified at higher temperature. Then the neuron can’t send any [inhibitory] signals.”

Searching for therapies

With a useful genetic model of epilepsy in fruit flies, Reenan said he is optimistic that researchers can now look for potential treatments for the disease. The next step, he said, is to use the practice of “forward genetics” to look for further mutations that might counter febrile seizures.

Given thousands of flies with model of the disease, scientists can purposely subject them to different DNA-altering conditions and then look to see if any flies lose their propensity for seizures. Among those that do, the researchers can then identify the specific genetic alteration responsible and determine whether that could ever be clinically applied. For example, if it turns out that a mutation proves therapeutic because it causes a certain protein to be overexpressed, then perhaps that protein could be refined into some kind of biologic pharmaceutical.

Reenan said he’d expect to see researchers follow a similar roadmap for other diseases as well.

“Knock-in of specific disease-causing mutations into the fly genome has the potential to provide a rapid and low-cost platform for studying the cellular mechanisms of heritable human diseases,” the authors wrote. “In addition, knock-in flies can be used in combination with forward genetic screens to identify suppressor and/or enhancer mutations, a strategy that is challenging in humans and rodent models but well established in Drosophila.”

In addition to Reenan, Gilligan, O’Dowd and Sun, other authors are Cynthia Staber of Brown and Ryan Schutte and Vivian Nguyen of UC Irvine.

In addition to the National Institutes of Health, the Howard Hughes Medical Institue and the Ellison Medical Foundation funded the research.

Editors: Brown University has a fiber link television studio available for domestic and international live and taped interviews, and maintains an ISDN line for radio interviews. For more information, call (401) 863-2476.

David Orenstein | EurekAlert!
Further information:
http://www.brown.edu

More articles from Life Sciences:

nachricht Quasi-sexual gene transfer drives genetic diversity of hot spring bacteria
29.05.2015 | Carnegie Institution

nachricht Scientists use unmanned aerial vehicle to study gray whales from above
29.05.2015 | NOAA National Marine Fisheries Service

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lasers are the key to mastering challenges in lightweight construction

Many joining and cutting processes are possible only with lasers. New technologies make it possible to manufacture metal components with hollow structures that are significantly lighter and yet just as stable as solid components. In addition, lasers can be used to combine various lightweight construction materials and steels with each other. The Fraunhofer Institute for Laser Technology ILT in Aachen is presenting a range of such solutions at the LASER World of Photonics trade fair from June 22 to 25, 2015 in Munich, Germany, (Hall A3, Stand 121).

Lightweight construction materials are popular: aluminum is used in the bodywork of cars, for example, and aircraft fuselages already consist in large part of...

Im Focus: Solid-state photonics goes extreme ultraviolet

Using ultrashort laser pulses, scientists in Max Planck Institute of Quantum Optics have demonstrated the emission of extreme ultraviolet radiation from thin dielectric films and have investigated the underlying mechanisms.

In 1961, only shortly after the invention of the first laser, scientists exposed silicon dioxide crystals (also known as quartz) to an intense ruby laser to...

Im Focus: Advance in regenerative medicine

The only professorship in Germany to date, one master's programme, one laboratory with worldwide unique equipment and the corresponding research results: The University of Würzburg is leading in the field of biofabrication.

Paul Dalton is presently the only professor of biofabrication in Germany. About a year ago, the Australian researcher relocated to the Würzburg department for...

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Quasi-sexual gene transfer drives genetic diversity of hot spring bacteria

29.05.2015 | Life Sciences

First Eastern Pacific tropical depression runs ahead of dawn

29.05.2015 | Earth Sciences

Donuts, math, and superdense teleportation of quantum information

29.05.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>