Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Energy-sensing switch discovery could have broad implications for Biology & Medicine

22.10.2012
Biochemists at The Scripps Research Institute (TSRI) have discovered a genetic sequence that can alter its host gene's activity in response to cellular energy levels.

The scientists have found this particular energy-sensing switch in bacterial genes, which could make it a target for a powerful new class of antibiotics. If similar energy-sensing switches are also identified for human genes, they may be useful for treating metabolism-related disorders such as type 2 diabetes and heart disease.

"This discovery adds a new dimension to our understanding of how cells sense and manage their energy levels, which is one of the most important processes in biology," said the study's senior author, Martha J. Fedor, a professor the departments of Chemical Physiology and Molecular Biology and a member of the Skaggs Institute for Chemical Biology at TSRI.

The findings are described online ahead of print on October 21, 2012, in the journal Nature Chemical Biology.

A Fuel Sensor

This type of gene-switching sequence is known as a riboswitch because it appears on the strand of ribonucleic acid (RNA) that is first transcribed from a gene's DNA. Unlike other known riboswitches, which have relatively limited functions, this one acts as a sensor for the basic molecular fuel that powers all living cells and controls many genes.

The newly discovered riboswitch detects a small molecule known as adenosine triphosphate (ATP), the standard unit of chemical energy in all known organisms on our planet. Scientists had thought that cells use only large and relatively complex proteins to sense these all-important energy molecules and adjust cell activities accordingly. No one had found ATP sensors among riboswitches, which can alter cell activity at a more fundamental level—usually by interrupting a gene's transcription from DNA.

Moreover, previously described riboswitches are relatively simple feedback sensors that affect narrow metabolic pathways. Most of them merely sense and adjust the expression rate of their own host gene. "This is the first riboswitch that is known to be involved in global metabolic regulation," said Fedor.

In recent years, the Fedor team had found hints that such a riboswitch could exist. Many RNA sequences with possible riboswitch activity had never been characterized, and several riboswitches in bacteria sense molecules that are closely related to ATP. Fedor and a graduate student in her laboratory, Peter Y. Watson, therefore set out to find bacterial riboswitches that could indeed sense ATP.

Caught in the Act

The task was more challenging than it might have seemed. Watson could not simply expose suspected riboswitches to ATP and see which ones stuck best to the energy molecules. ATP is present in high concentrations in cells, and its interactions with its known protein sensors are necessarily fleeting, low-affinity affairs. Interactions with a riboswitch would be expected to look the same. "Such interactions are really too weak to be detected using traditional methods," Watson said. But he found evidence that an RNA interaction with an ATP-like molecule would occur in a way that allows the brief coupling to be caught in the act—using a burst of ultraviolet radiation, which can create a strong chemical crosslink between two molecules.

In this way, he discovered a stretch of apparent ATP-binding RNA known as the ydaO motif. Watson performed structure-mapping analyses of ydaO to confirm that it binds to ATP and to determine precisely where it binds. Attaching ydaO to a "reporter" gene, he found that in bacterial cells, the reporter gene's expression level stayed low when ATP levels were normal and rose sharply when ATP levels dropped—as would be expected if ydaO is really an ATP-sensing riboswitch. Even in unaltered cells of a test bacterium, B. subtilis, levels of the genes that normally contain the ydaO motif rose and fell in the same way in response to changing ATP levels.

The ydaO motif occurs in the large subset of bacteria known as gram-positive bacteria. Across these bacterial species, it has been found, to date, on 580 separate genes. "These ydaO-regulated genes encode proteins that have a wide variety of functions, from cell wall metabolism to amino acid transport," Watson said. "It makes sense that a riboswitch in control of such disparate processes would be responding to a central metabolite such as ATP."

New Possibilities

The finding has basic scientific importance because it is the first known example of a riboswitch that binds ATP; it is also the first known riboswitch that has such broad regulatory functions. "It opens up the possibility that RNA switches are involved in the general regulation of metabolism," said Fedor.

The fact that ydaO motifs serve as "off-switches" for key bacterial genes also makes them a potential target for new antibiotics. "Hitting these riboswitches with a small-molecule, ATP-mimicking drug so that they can't turn on genes that promote bacterial growth and survival could be a viable approach," said Fedor.

Her laboratory will now search for other ATP-sensing riboswitches in bacteria and in higher organisms, including humans. A human ATP-sensing riboswitch, if targeted appropriately by drugs, might be able to alter cell activity in ways that help treat common metabolic disorders. Type 2 diabetes, which presently affects several hundred million people worldwide, is known to feature the improper regulation of ATP levels in cells.

Funding for the study, "The ydaO motif is an ATP-sensing riboswitch in Bacillus subtilis," was provided by the Skaggs Institute for Chemical Biology at TSRI.

Mika Ono | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>