Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Energy-sensing switch discovery could have broad implications for Biology & Medicine

22.10.2012
Biochemists at The Scripps Research Institute (TSRI) have discovered a genetic sequence that can alter its host gene's activity in response to cellular energy levels.

The scientists have found this particular energy-sensing switch in bacterial genes, which could make it a target for a powerful new class of antibiotics. If similar energy-sensing switches are also identified for human genes, they may be useful for treating metabolism-related disorders such as type 2 diabetes and heart disease.

"This discovery adds a new dimension to our understanding of how cells sense and manage their energy levels, which is one of the most important processes in biology," said the study's senior author, Martha J. Fedor, a professor the departments of Chemical Physiology and Molecular Biology and a member of the Skaggs Institute for Chemical Biology at TSRI.

The findings are described online ahead of print on October 21, 2012, in the journal Nature Chemical Biology.

A Fuel Sensor

This type of gene-switching sequence is known as a riboswitch because it appears on the strand of ribonucleic acid (RNA) that is first transcribed from a gene's DNA. Unlike other known riboswitches, which have relatively limited functions, this one acts as a sensor for the basic molecular fuel that powers all living cells and controls many genes.

The newly discovered riboswitch detects a small molecule known as adenosine triphosphate (ATP), the standard unit of chemical energy in all known organisms on our planet. Scientists had thought that cells use only large and relatively complex proteins to sense these all-important energy molecules and adjust cell activities accordingly. No one had found ATP sensors among riboswitches, which can alter cell activity at a more fundamental level—usually by interrupting a gene's transcription from DNA.

Moreover, previously described riboswitches are relatively simple feedback sensors that affect narrow metabolic pathways. Most of them merely sense and adjust the expression rate of their own host gene. "This is the first riboswitch that is known to be involved in global metabolic regulation," said Fedor.

In recent years, the Fedor team had found hints that such a riboswitch could exist. Many RNA sequences with possible riboswitch activity had never been characterized, and several riboswitches in bacteria sense molecules that are closely related to ATP. Fedor and a graduate student in her laboratory, Peter Y. Watson, therefore set out to find bacterial riboswitches that could indeed sense ATP.

Caught in the Act

The task was more challenging than it might have seemed. Watson could not simply expose suspected riboswitches to ATP and see which ones stuck best to the energy molecules. ATP is present in high concentrations in cells, and its interactions with its known protein sensors are necessarily fleeting, low-affinity affairs. Interactions with a riboswitch would be expected to look the same. "Such interactions are really too weak to be detected using traditional methods," Watson said. But he found evidence that an RNA interaction with an ATP-like molecule would occur in a way that allows the brief coupling to be caught in the act—using a burst of ultraviolet radiation, which can create a strong chemical crosslink between two molecules.

In this way, he discovered a stretch of apparent ATP-binding RNA known as the ydaO motif. Watson performed structure-mapping analyses of ydaO to confirm that it binds to ATP and to determine precisely where it binds. Attaching ydaO to a "reporter" gene, he found that in bacterial cells, the reporter gene's expression level stayed low when ATP levels were normal and rose sharply when ATP levels dropped—as would be expected if ydaO is really an ATP-sensing riboswitch. Even in unaltered cells of a test bacterium, B. subtilis, levels of the genes that normally contain the ydaO motif rose and fell in the same way in response to changing ATP levels.

The ydaO motif occurs in the large subset of bacteria known as gram-positive bacteria. Across these bacterial species, it has been found, to date, on 580 separate genes. "These ydaO-regulated genes encode proteins that have a wide variety of functions, from cell wall metabolism to amino acid transport," Watson said. "It makes sense that a riboswitch in control of such disparate processes would be responding to a central metabolite such as ATP."

New Possibilities

The finding has basic scientific importance because it is the first known example of a riboswitch that binds ATP; it is also the first known riboswitch that has such broad regulatory functions. "It opens up the possibility that RNA switches are involved in the general regulation of metabolism," said Fedor.

The fact that ydaO motifs serve as "off-switches" for key bacterial genes also makes them a potential target for new antibiotics. "Hitting these riboswitches with a small-molecule, ATP-mimicking drug so that they can't turn on genes that promote bacterial growth and survival could be a viable approach," said Fedor.

Her laboratory will now search for other ATP-sensing riboswitches in bacteria and in higher organisms, including humans. A human ATP-sensing riboswitch, if targeted appropriately by drugs, might be able to alter cell activity in ways that help treat common metabolic disorders. Type 2 diabetes, which presently affects several hundred million people worldwide, is known to feature the improper regulation of ATP levels in cells.

Funding for the study, "The ydaO motif is an ATP-sensing riboswitch in Bacillus subtilis," was provided by the Skaggs Institute for Chemical Biology at TSRI.

Mika Ono | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>