Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Energy of attacking virus revealed

20.01.2010
For the first time the research world has managed to measure the energy that is used when a virus infects a cell. The aim is to find a way to reduce the amount of energy inside the virus and thereby ultimately find a medicine that can counteract infections.

A group of chemistry researchers from Lund University in Sweden and from the University of Lyon in France lie behind the study.

On the borderline between chemistry and physics, scientists are finding new and exciting ways to understand how viruses function. Biochemist Alex Evilevitch from Lund University has long been interested in the more physical aspects of how viruses infect cells, both in humans and in bacteria (bacteria can in fact become infected by viruses).

In earlier research Alex Evilevitch has shown that viruses evince extremely high internal pressure, as high as the pressure at a depth of 500 meters (1640 feet) below sea level. Or, for that matter, pressure that is ten times more powerful than in an unopened bottle of champagne. This pressure functions as the virus's weapon when it attacks.

"The pressure enables the virus to insert its genes at high speed into the cell it is infecting," says Alex Evilevitch.

A virus consists of a thin protein coat that encapsulates its genes. When the virus has managed to infect a human cell, for example, the human's own genes are fooled into copying the genes of the virus, which helps the virus multiply inside the human body. The problem in finding medicines for virus infections is that viruses mutate at a rapid pace, that is, their genes are constantly changing, which makes it difficult to get a handle on them.

Alex Evilevitch and his colleagues are therefore seeking a solution by following another lead, with the help of physics. His research team is trying to find a way to regulate the pressure inside the coat of the virus. They want to lower the pressure in order to neutralize the virus. To be able to lower the pressure, they need to reduce the amount of energy inside the virus.

The three Swedish scientists Alex Evilevitch, Professor Bengt Jönsson, and doctoral candidate Meerim Jeembaeva, along with their colleague Martin Castelnovo in France, are the first researchers in world to succeed in measuring this amount of energy. They have used an instrument, a so-called calorimeter, that can measure the generation of heat at the very moment of infection, that is, when the virus sends off its genes with the help of its internal pressure.

The research team has also shown that the amount of energy in the virus is governed by the amount of water inside the coat of the virus. The scientists have therefore focused on developing methods for controlling the amount of energy in the virus by controlling the amount of water it contains. The research findings are now being published in Journal of Molecular Biology.

Alex Evilevitch says that there is great interest in this research field among clinical and molecular virologists, that is, virus researchers working in medical science.

Alex Evilevitch is a senior lecturer in biochemistry at the Center for Molecular Protein Science at the Department of Chemistry, Lund University. He is currently also employed by Carnegie Mellon University in Pittsburgh, Pennsylvania.

For more information, please contact: alexe@andrew.cmu.edu, mobile: +1(412) 482 2301

Pressofficer Lena Björk Blixt: Lena.Bjork_Blixt@kanslin.lu.se;+46-46 222 7186

Lena Björk Blixt | idw
Further information:
http://www.vr.se

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>