Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Energy of attacking virus revealed

20.01.2010
For the first time the research world has managed to measure the energy that is used when a virus infects a cell. The aim is to find a way to reduce the amount of energy inside the virus and thereby ultimately find a medicine that can counteract infections.

A group of chemistry researchers from Lund University in Sweden and from the University of Lyon in France lie behind the study.

On the borderline between chemistry and physics, scientists are finding new and exciting ways to understand how viruses function. Biochemist Alex Evilevitch from Lund University has long been interested in the more physical aspects of how viruses infect cells, both in humans and in bacteria (bacteria can in fact become infected by viruses).

In earlier research Alex Evilevitch has shown that viruses evince extremely high internal pressure, as high as the pressure at a depth of 500 meters (1640 feet) below sea level. Or, for that matter, pressure that is ten times more powerful than in an unopened bottle of champagne. This pressure functions as the virus's weapon when it attacks.

"The pressure enables the virus to insert its genes at high speed into the cell it is infecting," says Alex Evilevitch.

A virus consists of a thin protein coat that encapsulates its genes. When the virus has managed to infect a human cell, for example, the human's own genes are fooled into copying the genes of the virus, which helps the virus multiply inside the human body. The problem in finding medicines for virus infections is that viruses mutate at a rapid pace, that is, their genes are constantly changing, which makes it difficult to get a handle on them.

Alex Evilevitch and his colleagues are therefore seeking a solution by following another lead, with the help of physics. His research team is trying to find a way to regulate the pressure inside the coat of the virus. They want to lower the pressure in order to neutralize the virus. To be able to lower the pressure, they need to reduce the amount of energy inside the virus.

The three Swedish scientists Alex Evilevitch, Professor Bengt Jönsson, and doctoral candidate Meerim Jeembaeva, along with their colleague Martin Castelnovo in France, are the first researchers in world to succeed in measuring this amount of energy. They have used an instrument, a so-called calorimeter, that can measure the generation of heat at the very moment of infection, that is, when the virus sends off its genes with the help of its internal pressure.

The research team has also shown that the amount of energy in the virus is governed by the amount of water inside the coat of the virus. The scientists have therefore focused on developing methods for controlling the amount of energy in the virus by controlling the amount of water it contains. The research findings are now being published in Journal of Molecular Biology.

Alex Evilevitch says that there is great interest in this research field among clinical and molecular virologists, that is, virus researchers working in medical science.

Alex Evilevitch is a senior lecturer in biochemistry at the Center for Molecular Protein Science at the Department of Chemistry, Lund University. He is currently also employed by Carnegie Mellon University in Pittsburgh, Pennsylvania.

For more information, please contact: alexe@andrew.cmu.edu, mobile: +1(412) 482 2301

Pressofficer Lena Björk Blixt: Lena.Bjork_Blixt@kanslin.lu.se;+46-46 222 7186

Lena Björk Blixt | idw
Further information:
http://www.vr.se

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>