Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Energy of attacking virus revealed

20.01.2010
For the first time the research world has managed to measure the energy that is used when a virus infects a cell. The aim is to find a way to reduce the amount of energy inside the virus and thereby ultimately find a medicine that can counteract infections.

A group of chemistry researchers from Lund University in Sweden and from the University of Lyon in France lie behind the study.

On the borderline between chemistry and physics, scientists are finding new and exciting ways to understand how viruses function. Biochemist Alex Evilevitch from Lund University has long been interested in the more physical aspects of how viruses infect cells, both in humans and in bacteria (bacteria can in fact become infected by viruses).

In earlier research Alex Evilevitch has shown that viruses evince extremely high internal pressure, as high as the pressure at a depth of 500 meters (1640 feet) below sea level. Or, for that matter, pressure that is ten times more powerful than in an unopened bottle of champagne. This pressure functions as the virus's weapon when it attacks.

"The pressure enables the virus to insert its genes at high speed into the cell it is infecting," says Alex Evilevitch.

A virus consists of a thin protein coat that encapsulates its genes. When the virus has managed to infect a human cell, for example, the human's own genes are fooled into copying the genes of the virus, which helps the virus multiply inside the human body. The problem in finding medicines for virus infections is that viruses mutate at a rapid pace, that is, their genes are constantly changing, which makes it difficult to get a handle on them.

Alex Evilevitch and his colleagues are therefore seeking a solution by following another lead, with the help of physics. His research team is trying to find a way to regulate the pressure inside the coat of the virus. They want to lower the pressure in order to neutralize the virus. To be able to lower the pressure, they need to reduce the amount of energy inside the virus.

The three Swedish scientists Alex Evilevitch, Professor Bengt Jönsson, and doctoral candidate Meerim Jeembaeva, along with their colleague Martin Castelnovo in France, are the first researchers in world to succeed in measuring this amount of energy. They have used an instrument, a so-called calorimeter, that can measure the generation of heat at the very moment of infection, that is, when the virus sends off its genes with the help of its internal pressure.

The research team has also shown that the amount of energy in the virus is governed by the amount of water inside the coat of the virus. The scientists have therefore focused on developing methods for controlling the amount of energy in the virus by controlling the amount of water it contains. The research findings are now being published in Journal of Molecular Biology.

Alex Evilevitch says that there is great interest in this research field among clinical and molecular virologists, that is, virus researchers working in medical science.

Alex Evilevitch is a senior lecturer in biochemistry at the Center for Molecular Protein Science at the Department of Chemistry, Lund University. He is currently also employed by Carnegie Mellon University in Pittsburgh, Pennsylvania.

For more information, please contact: alexe@andrew.cmu.edu, mobile: +1(412) 482 2301

Pressofficer Lena Björk Blixt: Lena.Bjork_Blixt@kanslin.lu.se;+46-46 222 7186

Lena Björk Blixt | idw
Further information:
http://www.vr.se

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>