Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Endometrial stem cells could repair brain cells damaged by Parkinson's disease

07.05.2010
Stem cells derived from the endometrium (uterine lining) and transplanted into the brains of laboratory mice with Parkinson's disease appear to restore functioning of brain cells damaged by the disease, according to a new study by Yale School of Medicine researchers.

The findings are published in the Journal of Cellular and Molecular Medicine. Although these are preliminary results, the findings increase the likelihood that endometrial tissue could be harvested from women with Parkinson's disease and used to re-grow brain areas that have been damaged by the disease, according to lead author Hugh S. Taylor, M.D., professor in the Department of Obstetrics, Gynecology & Reproductive Sciences at Yale School of Medicine, and section chief of Reproductive Endocrinology and Infertility at Yale School of Medicine.

Because of their ability to divide into new cell types, stem cells could be the key to treating many different kinds of diseases, like Parkinson's, in which the body's own cells are damaged or depleted. Parkinson's is caused by a breakdown of dopamine-producing nerve cells in the brain stem. Dopamine is a neurotransmitter that stimulates the motor neurons that in turn control muscles. When dopamine production is reduced, the nerves are not able to control movement or maintain coordination.

In their study, Taylor and his colleagues collected and cultured endometrial tissue from nine women, and verified that they could be transformed into dopamine-producing nerve cells like those in the brain.

"The dopamine levels in the mice increased once we transferred the endometrial stem cells into their brains," said Taylor. "This is encouraging because women have a ready supply of stem cells that are easily obtained, can differentiate into other cell types. They may have great potential for treating multiple diseases."

Highlighting the benefits of using endometrial stem cells, Taylor said the ethical concerns surrounding the use of embryonic stem cells are eliminated when using adult stem cells. Taylor also points out that endometrial stem cells are one of the best sources for generating neurons because they appear to be less likely to be rejected than stem cells from other sources.

"This is just the tip of the iceberg of what we will be able to do with these cells," said Taylor. "We believe these neurons are only the first of many cell types derived from endometrium that will be used to treat a variety of diseases."

Other Yale authors on the study included Erin F. Wolff, Xiao-Bing Gao, Katherine V. Yao, Zane B. Andrews, Hongling Du and John D. Elsworth.

The study was funded by the Eunice Kennedy Shriver National Institute of Child Health and Human Development.

Citation: Journal of Cellular and Molecular Medicine

Karen N. Peart | EurekAlert!
Further information:
http://www.yale.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>