Endometrial stem cells could repair brain cells damaged by Parkinson's disease

The findings are published in the Journal of Cellular and Molecular Medicine. Although these are preliminary results, the findings increase the likelihood that endometrial tissue could be harvested from women with Parkinson's disease and used to re-grow brain areas that have been damaged by the disease, according to lead author Hugh S. Taylor, M.D., professor in the Department of Obstetrics, Gynecology & Reproductive Sciences at Yale School of Medicine, and section chief of Reproductive Endocrinology and Infertility at Yale School of Medicine.

Because of their ability to divide into new cell types, stem cells could be the key to treating many different kinds of diseases, like Parkinson's, in which the body's own cells are damaged or depleted. Parkinson's is caused by a breakdown of dopamine-producing nerve cells in the brain stem. Dopamine is a neurotransmitter that stimulates the motor neurons that in turn control muscles. When dopamine production is reduced, the nerves are not able to control movement or maintain coordination.

In their study, Taylor and his colleagues collected and cultured endometrial tissue from nine women, and verified that they could be transformed into dopamine-producing nerve cells like those in the brain.

“The dopamine levels in the mice increased once we transferred the endometrial stem cells into their brains,” said Taylor. “This is encouraging because women have a ready supply of stem cells that are easily obtained, can differentiate into other cell types. They may have great potential for treating multiple diseases.”

Highlighting the benefits of using endometrial stem cells, Taylor said the ethical concerns surrounding the use of embryonic stem cells are eliminated when using adult stem cells. Taylor also points out that endometrial stem cells are one of the best sources for generating neurons because they appear to be less likely to be rejected than stem cells from other sources.

“This is just the tip of the iceberg of what we will be able to do with these cells,” said Taylor. “We believe these neurons are only the first of many cell types derived from endometrium that will be used to treat a variety of diseases.”

Other Yale authors on the study included Erin F. Wolff, Xiao-Bing Gao, Katherine V. Yao, Zane B. Andrews, Hongling Du and John D. Elsworth.

The study was funded by the Eunice Kennedy Shriver National Institute of Child Health and Human Development.

Citation: Journal of Cellular and Molecular Medicine

Media Contact

Karen N. Peart EurekAlert!

More Information:

http://www.yale.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Advance in light-based computing

…shows capabilities for future smart cameras. UCLA-developed experimental device demonstrates ability to reduce glare in images. Researchers developing the next generation of computing technology aim to bring some light to…

Evidence for reversible oxygen ion movement during electrical pulsing

…enabler of the emerging ferroelectricity in binary oxides. In a recent study published in Materials Futures, researchers have uncovered a pivotal mechanism driving the emergence of ferroelectricity in binary oxides….

Next-generation treatments hitch a ride into cancer cells

Researchers from Osaka University discover that opening a channel into cancer cells helps antisense oligonucleotide drugs reach their targets. Antisense oligonucleotides (ASOs) are next-generation drugs that can treat disease by…

Partners & Sponsors