Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Emus emulate chick developmental stages

18.02.2011
Birds are useful models in developmental biology, but the study of avian development has been dominated by a single species of chicken. New research provides a comparative description of the development of the emu with that of the better-known chick.

Birds are useful models in developmental biology, given their large, external eggs and an array of classic embryology techniques, but the study of avian development has been dominated by a single species, the chicken Gallus gallus.


The emu, Dromaius novaehollandiae(left), and a comparison of emu and chicken eggs (right)

While a few other bird varieties have been studied for purposes of comparison, these have all been from the “modern” species (neognaths), such as quail, duck and pheasant. A number of more basal bird species (palaeognaths), including ostrich, rhea, kiwi, and emu survive, but their development has remained unstudied.

Now, in a report published in Developmental Dynamics, Hiroki Nagai of the Laboratory of Early Embryogenesis (Guojun Sheng, Team Leader) and colleagues from the same lab as well as the Laboratory for Sensory Development (Raj Ladher, Team Leader) provide a comparative description of the development of the emu, Dromaius novaehollandiae, with that of the better-known chick. The team found that while the two birds’ proceed through similar embryonic stages, a number of differences in timing and pace set them on the widely diverging courses manifested in their adult forms.

Nagai’s approach centered on identifying emu equivalents for Hamilton-Hamburger stages in the chick. The Hamburger-Hamilton (HH) system uses definitive morphological characteristics to determine the state of development, and is the gold standard in staging chick embryos. As a general rule, emus take 2–3 times longer than chicks to reach the same HH stage.

The early development of the emu resembles that of the chick until HH7. During subsequent stages in which somites form, however, the emu forms a greater number of these structures than the chick. The emu somitogenic period was calculated to be 100–110 min, slightly longer than the 90 minutes in chick embryos.

The forelimbs in adult emus are diminutive, which is reflected in development as well. The forelimb buds form and undergo initial patterning, but these appendages fail to grow apace with the rest of the embryo body, including the hindlimbs. Interestingly, adult emus also have fewer forelimb digits than do other birds, a difference that is also observable at the stage of the limb’s patterning. Once the limb buds have formed, the emu embryo begins a growth spurt that results in the enormous size differential with the chick.

In addition to their comprehensive morphological observations, the team looked at the expression of a number of genes, such as Sonic hedgehog (Shh), Brachyury, and Chordin, known to be important in early development. Expression patterns were similar to those in chick up to stage 7, when the first somite appears, with the single exception that the Brachyury expression begins slightly later in emu.

“Since a brief description by Haswell in 1887, there has not been any published study of emu development,” says Sheng. “In staging these embryos, we learned of the high level of conservation of developmental routines across bird orders, which suggests that findings from the chick may well apply generally to birds. That said, we also saw heterochrony in the development of specific tissues and structures between chick and emu, so we look forward to studying these embryos in more detail through cell labeling, transplants, and imaging techniques.”

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>