Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Emus emulate chick developmental stages

18.02.2011
Birds are useful models in developmental biology, but the study of avian development has been dominated by a single species of chicken. New research provides a comparative description of the development of the emu with that of the better-known chick.

Birds are useful models in developmental biology, given their large, external eggs and an array of classic embryology techniques, but the study of avian development has been dominated by a single species, the chicken Gallus gallus.


The emu, Dromaius novaehollandiae(left), and a comparison of emu and chicken eggs (right)

While a few other bird varieties have been studied for purposes of comparison, these have all been from the “modern” species (neognaths), such as quail, duck and pheasant. A number of more basal bird species (palaeognaths), including ostrich, rhea, kiwi, and emu survive, but their development has remained unstudied.

Now, in a report published in Developmental Dynamics, Hiroki Nagai of the Laboratory of Early Embryogenesis (Guojun Sheng, Team Leader) and colleagues from the same lab as well as the Laboratory for Sensory Development (Raj Ladher, Team Leader) provide a comparative description of the development of the emu, Dromaius novaehollandiae, with that of the better-known chick. The team found that while the two birds’ proceed through similar embryonic stages, a number of differences in timing and pace set them on the widely diverging courses manifested in their adult forms.

Nagai’s approach centered on identifying emu equivalents for Hamilton-Hamburger stages in the chick. The Hamburger-Hamilton (HH) system uses definitive morphological characteristics to determine the state of development, and is the gold standard in staging chick embryos. As a general rule, emus take 2–3 times longer than chicks to reach the same HH stage.

The early development of the emu resembles that of the chick until HH7. During subsequent stages in which somites form, however, the emu forms a greater number of these structures than the chick. The emu somitogenic period was calculated to be 100–110 min, slightly longer than the 90 minutes in chick embryos.

The forelimbs in adult emus are diminutive, which is reflected in development as well. The forelimb buds form and undergo initial patterning, but these appendages fail to grow apace with the rest of the embryo body, including the hindlimbs. Interestingly, adult emus also have fewer forelimb digits than do other birds, a difference that is also observable at the stage of the limb’s patterning. Once the limb buds have formed, the emu embryo begins a growth spurt that results in the enormous size differential with the chick.

In addition to their comprehensive morphological observations, the team looked at the expression of a number of genes, such as Sonic hedgehog (Shh), Brachyury, and Chordin, known to be important in early development. Expression patterns were similar to those in chick up to stage 7, when the first somite appears, with the single exception that the Brachyury expression begins slightly later in emu.

“Since a brief description by Haswell in 1887, there has not been any published study of emu development,” says Sheng. “In staging these embryos, we learned of the high level of conservation of developmental routines across bird orders, which suggests that findings from the chick may well apply generally to birds. That said, we also saw heterochrony in the development of specific tissues and structures between chick and emu, so we look forward to studying these embryos in more detail through cell labeling, transplants, and imaging techniques.”

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht Embryonic development: How do limbs develop from cells?
18.05.2018 | Humboldt-Universität zu Berlin

nachricht Reading histone modifications, an oncoprotein is modified in return
18.05.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>