Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Emergency Alert in the Cell - Scientists identify new mechanisms in the cellular stress response

28.02.2014

After a natural disaster like a big fire, countless helpers work together to get rid of debris, to build temporary shelters and to provide food for people in need. When a cell is exposed to dangerous environmental conditions such as high temperature, a quite similar process is initiated: the cellular stress response, also called heat shock response. Scientists of the Max Planck Institute of Biochemistry in Munich-Martinsried could uncover an entire network of cellular helpers and thus identify new regulatory mechanisms of this stress response. “Our results could also be of use for investigating neurodegenerative diseases such as Alzheimer’s or Parkinson’s,” hopes PhD student Christian Loew

When an organism is exposed to life-threatening conditions, it sounds the alarm and a cellular emergency program, the heat shock response, is initiated. However, the name “heat shock response” is misleading.


When a cell is exposed to life-threatening conditions, the protein HSF1 (marked in green) initiates an emergency program to prevent permanent damage to the cell.

Picture: Christian Loew / Copyright: MPI of Biochemistry

In the beginning of the 1960s, this form of stress response was first observed. Scientists exposed fruit flies to high temperatures and discovered a complex emergency program designated to save single cells and thus the organism itself. Today researchers know that this program is also triggered by other dangers such as radiation or toxic substances. The terminology, however, is still in use.

During the heat shock response, different stress proteins are synthesized. Their task is to prevent permanent damage to the organism. “You can compare it to an emergency alert. In order to restore the original status as soon as possible, problems and damages are identified, counter-measures initiated and coordinated”, Loew describes the processes in the cell.

In a comprehensive analysis, the Max Planck scientists have investigated 15 000 proteins and their role in the heat shock response. They could show that the helpers are organized in different groups according to their tasks and disaster zones. One group of proteins, for instance, checks whether the DNA in the nucleus is still intact.

The protein HSF1 (short for heat shock transcription factor) is responsible for the central coordination of the disaster management. In the moment it is activated, it calls a variety of other proteins into action to eliminate the damages. The scientists could demonstrate two ways in which this control center in itself is regulated. When the crisis is overcome, HSF1 is degraded by the cell’s waste disposal system, the proteasome. As long as there is still damage to get rid of, another protein (Acetyltransferase EP300) prevents the degradation.

The understanding of the heat shock response could also be of interest for neurodegenerative diseases such as Alzheimer’s or Parkinson’s, so the scientists in Martinsried hope. Typical for these diseases are massive cell damages and, thus, the excessive demand on the cellular quality control. Nerve cells die and cannot fulfill their tasks in the brain anymore. “A targeted activation of the heat shock response could reduce the disease specific cell damages,” explains Loew.

Original Publication

S. Raychaudhuri, C. Loew, R. Körner, S. Pinkert, M. Theis, M. Hayer-Hartl, F. Buchholz and F. U. Hartl: Interplay of Acetyltransferase EP300 and the Proteasome System in Regulating Heat Shock Transcription Factor 1. Cell, February 27, 2014.
DOI: 10.1016/j.cell.2014.01.055

Contact

Prof. Dr. F.-Ulrich Hartl

Cellular Biochemistry
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Germany
E-Mail: uhartl@biochem.mpg.de
http://www.biochem.mpg.de/hartl

Anja Konschak
Public Relations
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Germany
Tel. +49 89 8578-2824
E-Mail: konschak@biochem.mpg.de
http://www.biochem.mpg.de

Weitere Informationen:

Anja Konschak | Max-Planck-Institut für Biochemie

Further reports about: Biochemistry Cell Cellular Emergency Max-Planck-Institut diseases mechanisms organism proteins shock

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>