Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Emergency Alert in the Cell - Scientists identify new mechanisms in the cellular stress response

28.02.2014

After a natural disaster like a big fire, countless helpers work together to get rid of debris, to build temporary shelters and to provide food for people in need. When a cell is exposed to dangerous environmental conditions such as high temperature, a quite similar process is initiated: the cellular stress response, also called heat shock response. Scientists of the Max Planck Institute of Biochemistry in Munich-Martinsried could uncover an entire network of cellular helpers and thus identify new regulatory mechanisms of this stress response. “Our results could also be of use for investigating neurodegenerative diseases such as Alzheimer’s or Parkinson’s,” hopes PhD student Christian Loew

When an organism is exposed to life-threatening conditions, it sounds the alarm and a cellular emergency program, the heat shock response, is initiated. However, the name “heat shock response” is misleading.


When a cell is exposed to life-threatening conditions, the protein HSF1 (marked in green) initiates an emergency program to prevent permanent damage to the cell.

Picture: Christian Loew / Copyright: MPI of Biochemistry

In the beginning of the 1960s, this form of stress response was first observed. Scientists exposed fruit flies to high temperatures and discovered a complex emergency program designated to save single cells and thus the organism itself. Today researchers know that this program is also triggered by other dangers such as radiation or toxic substances. The terminology, however, is still in use.

During the heat shock response, different stress proteins are synthesized. Their task is to prevent permanent damage to the organism. “You can compare it to an emergency alert. In order to restore the original status as soon as possible, problems and damages are identified, counter-measures initiated and coordinated”, Loew describes the processes in the cell.

In a comprehensive analysis, the Max Planck scientists have investigated 15 000 proteins and their role in the heat shock response. They could show that the helpers are organized in different groups according to their tasks and disaster zones. One group of proteins, for instance, checks whether the DNA in the nucleus is still intact.

The protein HSF1 (short for heat shock transcription factor) is responsible for the central coordination of the disaster management. In the moment it is activated, it calls a variety of other proteins into action to eliminate the damages. The scientists could demonstrate two ways in which this control center in itself is regulated. When the crisis is overcome, HSF1 is degraded by the cell’s waste disposal system, the proteasome. As long as there is still damage to get rid of, another protein (Acetyltransferase EP300) prevents the degradation.

The understanding of the heat shock response could also be of interest for neurodegenerative diseases such as Alzheimer’s or Parkinson’s, so the scientists in Martinsried hope. Typical for these diseases are massive cell damages and, thus, the excessive demand on the cellular quality control. Nerve cells die and cannot fulfill their tasks in the brain anymore. “A targeted activation of the heat shock response could reduce the disease specific cell damages,” explains Loew.

Original Publication

S. Raychaudhuri, C. Loew, R. Körner, S. Pinkert, M. Theis, M. Hayer-Hartl, F. Buchholz and F. U. Hartl: Interplay of Acetyltransferase EP300 and the Proteasome System in Regulating Heat Shock Transcription Factor 1. Cell, February 27, 2014.
DOI: 10.1016/j.cell.2014.01.055

Contact

Prof. Dr. F.-Ulrich Hartl

Cellular Biochemistry
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Germany
E-Mail: uhartl@biochem.mpg.de
http://www.biochem.mpg.de/hartl

Anja Konschak
Public Relations
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Germany
Tel. +49 89 8578-2824
E-Mail: konschak@biochem.mpg.de
http://www.biochem.mpg.de

Weitere Informationen:

Anja Konschak | Max-Planck-Institut für Biochemie

Further reports about: Biochemistry Cell Cellular Emergency Max-Planck-Institut diseases mechanisms organism proteins shock

More articles from Life Sciences:

nachricht Enduring cold temperatures alters fat cell epigenetics
19.04.2018 | University of Tokyo

nachricht Full of hot air and proud of it
18.04.2018 | University of Pittsburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>